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Abstract. We give new examples of affine sufaces whose rings of coordinates

are d-simple and use these examples to construct simple nonholonomic D-

modules over these surfaces.

1. Introduction

The d-simplicity of commutative rings was the subject of several papers in the
1970s and early 1980s, at least partly because of its applications to the construction
of simple noncommutative noetherian rings [12, Proposition 1.14]. Although little
was published on it from the mid 1980s to the mid 1990s, the subject has known
something of a revival in recent years, fuelled perhaps by the construction of new
examples of derivations with respect to which the ring of polynomials is d-simple
[5], [2], [16], [13], and also by the application of these derivations to the construction
of new families of simple modules over rings of differential operators [4], [9].

Despite these advances, some aspects of the theory have progressed very little
since the 1980s. One of these is the construction of new examples of d-simple rings.
The only examples known up to now were the ones already given in J. Archer’s PhD
thesis [1]; namely, coordinate rings of affine spaces, tori, quadrics, and products of
these varieties with affine space.

This is precisely the question that we tackle in this paper. As an application
of the theorems proved in section 3, we give several new examples of smooth sur-
faces whose coordinate rings are d-simple. Two of these lead to new families of
nonholonomic simple D-modules over surfaces. One of these families is particularly
interesting because all the previous examples of simple nonholonomic D-modules
required the affine surface to have trivial Picard group. However, the surface of
Example 4.1 is the product of an elliptic curve E with an affine line, so its Picard
group, which is isomorphic to Pic(E), must be nonzero. As a bonus we construct,
in Example 4.4, an irreducible nonholonomic D-module over an explicit surface of
C3, taking a singular derivation as our starting point.
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2. Preliminaries

We begin by fixing some notation. Throughout the paper, K will be an alge-
braically closed field of characteristic zero. The coordinate ring of an affine variety
X will be denoted by O(X). If x is an indeterminate over K then ∂x will stand for
the partial differential operator ∂/∂x.

An ideal I of a commutative K-algebra A is stable under a derivation d of A if
d(I) ⊆ I. If I is generated by f , then we also say that f is stable under d. The
algebra A is d-simple if there exists a derivation d of A with no stable ideals apart
from {0} and A. In this case, d is called a simple derivation of A.

Since we will be discussing modules over a ring of differential operators in section
4, we review some basic facts about these rings before we proceed. Let X be an
irreducible, smooth, affine variety over a field K of characteristic zero. The ring of
differential operators D(X) is the K-subalgebra of EndKO(X) generated by O(X)
and its module of K-derivations DerK(X). The ring D(X) admits a filtration,
defined by

C0 = O(X), C1 = R+ DerK(X) and Ck = Ck
1 if k > 0.

An operator d ∈ D(X) has order k if d ∈ Ck \ Ck−1. It follows from [14, proposition
15.4.5] that the graded ring associated with this filtration is isomorphic to the
symmetric algebra on DerK(X). We denote this algebra by S(X). Let Sk(X) be
the k-th homogenous component of the symmetric algebra. The symbol map of
order k, denoted by σk, is the composition

σk : Ck → Ck/Ck−1
∼−→ Sk(X).

If d ∈ Ck \Ck−1 then its principal symbol is σ(d) = σk(d). Given an ideal I of D(X),
denote by σ(I) the ideal of S(X) generated the principal symbols σ(d) of all d ∈ I.

The algebra S(X) has an additional structure of Lie algebra. Let f1 and f2 be
homogeneous elements of S(X) of degrees r1 and r2. There exist a1, a2 ∈ D(X) of
orders r1 and r2 respectively, such that σri(ai) = fi. The Poisson bracket of f1 and
f2 is defined by

{f1, f2} = σr1+r2−1([a1, a2])

where [a1, a2] denotes the commutator in D(X). This is easily extended, by linear-
ity, to all of S(X). An ideal of S(X) is involutive if it is closed under the Poisson
bracket. Note that if I is a left ideal of D(X) then σ(I) is an involutive ideal of
S(X).

We finish this section with the problem of constructing simple D(X)-modules
over a smooth variety X. The key assumption will be that O(X) is d-simple with
respect to a derivation d. Our first result appeared as Theorem 2.1 of [4]. However,
as has been pointed out by D. Levcovitz, the proof given there works only when
O(X) is a unique factorization domain. Since we need the same result in a more
general setting, we give a new proof below.

Theorem 2.1. Let X be an irreducible, smooth, affine variety over K. Suppose
that there exists a derivation d of O(X) with respect to which this ring is d-simple.
Let S ⊆ O(X)\{0} be a multiplicative set and put M = D(X)/D(X)(d+f), where
f ∈ O(X). If d(S) ⊂ S then:

(1) if N is a nonzero submodule of M then NS is a nonzero submodule of MS;
(2) if MS is a simple D(X)S-module then M is a simple D(X)-module.
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Proof. Suppose that J is a left ideal of D(X) which contains D(X)(d+f) properly.
To prove (1) it is enough to show that

D(X)S(d+ f) $ JS.

Assume, by contradiction, that these ideals are equal after the localisation has
been performed. Thus, given a nonzero element a of J there exists s ∈ S such
that sa ∈ D(X)(d + f). Taking symbols, we have that sσ(a) belongs to the ideal
of S(X) generated by σ(d). Since S(X) is noetherian and commutative, the set

S0 = {s ∈ S : sσ(a) ∈ S(X)σ(d) for all a ∈ J}

must be nonempty. Now, if s ∈ S0, then, using the involutivity of S(X)σ(d), we
have that

{sσ(a), σ(d)} = σ(a){s, σ(d)}+ s{σ(a), σ(d)} ∈ S(X)σ(d).

However, σ(J) is involutive, so that {σ(a), σ(d)} ∈ σ(J). Hence, s{σ(a), σ(d)} ∈
S(X)σ(d), because we chose s ∈ S0. Therefore,

d(s)σ(a) = {σ(d), s}σ(a) ∈ S(X)σ(d).

Since this holds for every a ∈ J , it follows that d(s) ∈ S0. Hence, dj(s) ∈ S0 for
all j ≥ 0. However, the ideal of O(X) generated by dj(s), for j ≥ 0, is stable under
d. If 0 6= s ∈ K, then we are done; otherwise, since O(X) is d-simple, there exist
b0, . . . , bk ∈ O(X) such that

b0s+ b1d(s) + · · ·+ bkd
k(s) = 1.

Thus,
σ(a) = b0sσ(a) + b1d(s)σ(a) + · · ·+ bkd

k(s)σ(a) ∈ S(X)σ(d).
Now take a ∈ J \ D(X)(d + f) to be an element of smallest possible order. Since
σ(a) = σ(b)σ(d), for some b ∈ D(X), it follows that a − b(d + f) ∈ J has smaller
order than a. Thus a − b(d + f) ∈ D(X)(d + f), and so a ∈ D(X)(d + f), a
contradiction. This proves (1).

To prove (2) we must show that D(X)(d + f) is a maximal left ideal. Let J
be as above; then D(X)/J is a homomorphic image of M . Since MS is simple
and localisation is an exact functor, it follows from (1) that JS = D(X)S. Thus
S ∩ J 6= ∅. In particular, O(X) ∩ J is a nonzero ideal of O(X). But d+ f ∈ J , so
if a ∈ O(X) ∩ J , then

[d+ f, a] = d(a) ∈ O(X) ∩ J.
Thus O(X)∩ J is a nonzero d-ideal of O(X). Since O(X) is d-simple, we conclude
that 1 ∈ J . Hence D(X)(d+ f) is a maximal left ideal, as we wanted to prove. �

As usual, we denote the nth complex Weyl algebra by An. In other words, An

is the the ring of differential operators over the complex nth affine space. We will
often use the following result from [9, Theorem 2.1].

Theorem 2.2. Let a be a polynomial, and d = ∂x + a∂y a derivation of C[x, y]. If
C[x, y] is d-simple, then there exists f ∈ C[x, y] such that A2/A2(d+ f) is a simple
nonholonomic left A2-module.

Recall that, if I is a left ideal of D(X), then the module D(X)/I is nonholonomic
if the symbol ideal σ(I) has dimension greater than dim(X). In particular, if
I is cyclic and dim(X) > 1 then D(X)/I is nonholonomic, because dim(σ(I)) =
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2 dim(X)−1 in this case. For more details on holonomic and nonholonomic modules
see [3, chapters 10 and 11].

3. Derivations on surfaces

Throughout this section we will assume that n ≥ 2 is an integer, and that
g ∈ K[x, y]. Let S be the affine surface with equation zn − g = 0 in A3(K).

Proposition 3.1. S is smooth if and only if the curve g = 0 is smooth in A2(K).
In particular, if S is smooth then g is squarefree.

Proof. Let f = zn − g(x, y). If p = (x0, y0, z0) ∈ A3(K) is a singular point of S,
then

∂f

∂z
(p) = nzn−1

0 = 0,

so that f(p) = ∇f(p) = 0 is equivalent to

z0 = g(x0, y0) = ∇g(x0, y0) = 0.

But such a (x0, y0) exists if and only if the curve g = 0 is not smooth in A2(K). �

The main result of this section is an application of the idea of lifting a holomor-
phic foliation by a finite projection. Since the surfaces we are dealing with are fairly
special, we will be able to prove a result that is far sharper than [15, Theorem 1].

Theorem 3.2. Let d = a∂x + b∂y be a derivation of K[x, y] with no stable ideal of
height 1 and let g ∈ K[x, y]. If S is smooth then,

nzn−1d+ d(g)∂z

induces a derivation ∆ on O(S), which does not have any stable height 1 ideals.
Moreover, the singularities of ∆ are the zeroes of the ideal (z, g, d(g)) · (zn−g, a, b).
In particular, ∆ has a finite number of singularities.

Proof. A simple computation shows that

(nzn−1d+ d(g)∂z)(zn − g) = 0,

so nzn−1d + d(g)∂z induces a derivation ∆ over O(S). Now, let I 6= 0 be a prime
ideal of O(S) that is stable under ∆. It is convenient to split the proof into three
parts.

First part: If I ∩K[x, y] is not stable under d then (g, d(g)) ⊆ I.

Since O(S) is finite over K[x, y], it follows that I ∩K[x, y] 6= 0 is a prime ideal
of K[x, y] of the same height as I. But I is stable under ∆, so that

nzn−1d(I ∩K[x, y]) = ∆(I ∩K[x, y]) ⊆ I.

Since I is prime, either z ∈ I or I∩K[x, y] is stable under d. Since we are assuming
that the latter does not occur, then z ∈ I. Thus,

d(g) = ∆(z) ∈ I and g ∈ I,

which completes the proof of the first part.

Second part: No height one ideals of O(S) are stable under ∆.
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Suppose, now, that I is a height one prime ideal of O(S). Hence, I∩K[x, y] must
be a height one prime ideal of K[x, y]. Thus, there exists an irreducible polynomial
p which generates I ∩K[x, y]. But, by the first part,

(g, d(g)) ⊆ I ∩K[x, y] = (p).

Let g = ph, for some h ∈ K[x, y]. Since S is smooth, p cannot divide h. But

d(g) = hd(p) + d(h)p ∈ I ∩K[x, y] = (p),

implies that p divides d(p), which contradicts the hypothesis on d. Therefore, I
cannot have height one and be stable under ∆ at the same time.

Third part: computing the singularities of ∆.
If p ∈ K3 is a singularity of ∆, then either p belongs to the plane z = 0, or p is

a singularity of d. Moreover, in the first case, p must also be a zero of g and d(g).
Thus, the singular set of ∆ is equal to the zero set in K3 of the ideal

I = (z, g, d(g)) · (zn − g, a, b).
Since this ideal is stable under ∆, it cannot have height one by the second part of
the proof. In particular, the set of zeroes of I in S is finite. �

Corollary 3.3. If K[x, y] is d-simple and (g, d(g)) = K[x, y], then:
(1) O(S) is ∆-simple;
(2) the module of Kähler differentials of S is free of rank two.

Proof. The first part is an immediate consequence of the theorem. The second part
follows from the first and from the following result of J. Archer [1, Theorem 2.5.18,
p.101]:

Let S be a smooth surface in A3(K). The module of Kähler dif-
ferentials of S is free of rank two if and only if DerK(S) contains a
nonsingular derivation.

�

The second corollary combines the above results on derivations with the theorems
of section 2.

Corollary 3.4. Let f ∈ K[x, y] and n > 1 be an integre. If
(1) K[x, y] is d-simple;
(2) deg(g) > 1;
(3) (g, d(g)) = K[x, y];
(4) deg(a) 6= deg(b), and
(5) A2(d+ f) is a maximal left ideal of A2;

then D(S)/D(S)(∆ + nzn−1f) is a simple nonholonomic D(S)-module.

Proof. The proof consists in reducing the problem to the A2-module A2/A2(d+f),
using Theorem 2.1. However, to do this, we must introduce an adequate multi-
plicative set of O(S). Consider

S = {zjh : 0 ≤ j ≤ n− 1 and h ∈ K[x, y] \K} ∪ {zn−1}.
Since

(zn−1)2 = zn · zn−2 = gzn−2 ∈ S,

it is easy to check that S is a multiplicative set of O(S). However, we must also
show that it is stable under ∆ in order to apply Theorem 2.1. Recall, first of all,
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that d is simple by Corollary 3.3; so there exists no h ∈ K[x, y] \ K such that
d(h) = 0. Now, deg(g) > 1 implies that

∆(zn−1) = (n− 1)zn−2d(g) ∈ S.

Moreover,

∆(h) = nzn−1d(h) ∈ S,

even when d(h) ∈ K \ {0}. Thus, we need only show that ∆(zjh) ∈ S for some
j ≥ 1 and h ∈ K[x, y] \K. But, under these hypotheses,

∆(zjh) = zj−1(nznd(h) + jd(g)h) = zj−1(ngd(h) + jd(g)h),

in O(S). Hence, the right hand side of this equation belongs to S if and only if
ngd(h) + jd(g)h is not a constant. Since this constant cannot be zero, we may
assume, without loss of generality, that

ngd(h) + jd(g)h = 1.

Thus,

d(hngj) = hn−1gj−1(ngd(h) + jd(g)h) = hn−1gj−1.

However,

deg(hn−1gj−1) = (n− 1) deg(h) + (j − 1) deg(g),

while

deg(d(hngj)) ≥ ndeg(h) + j deg(g) + min{deg(a),deg(b)} − 1.

Comparing the last two equations, we conclude that

deg(g) + deg(h) ≤ 1,

which is a contradiction because deg(gh) ≥ 2. Therefore, d(S) ⊆ S as required by
Theorem 2.1.

Now, let M = D(S)/D(S)(∆ + nzn−1f). Since O(S) is ∆-simple by Corollary
3.3, it follows from Theorem 2.1 that M is simple if and only if MS is simple.
Therefore, we need only prove that MS is a simple D(S)S-module.

Denote by L and L0 the quotient fields of O(S) and K[x, y], respectively. Since(
∆

nzn−1
+ f

) ∣∣∣
D(L0)

= d+ f,

it follows that

N = D(L0)/D(L0)((n−1z1−n)∆ + f) ∼= D(L0)/D(L0)(d+ f).

But this last module is a localization of A2/A2(d+f), which is simple by hypothesis.
Therefore, N is a simple module contained in

D(L)/D(L)((n−1z1−n)∆ + f) ∼= MS.

But this implies that MS is simple, by the proof of [4, Theorem 2.2(2), p. 408],
which completes the proof. �
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4. The examples

The following notation will be in force throughout the section. Given an integer
n ≥ 2, a polynomial g ∈ K[x, y], and a derivation d of K[x, y], the surface of
A3(K) with equation zn − g = 0 will be denoted by S and ∆ will stand for the
derivation of O(S) induced by nzn−1d − d(g)∂z. We begin with the example of a
simple nonholonomic module mentioned at the introduction.

Example 4.1. Let g(x) ∈ K[x] be a squarefree polynomial of degree 3. Then,

(1) Pic(S) 6= 0, and
(2) there exist nonholonomic simple modules over D(S).

Proof. Let E be the curve of A3(K) with equations y = z2 − g = 0. Then, S ∼=
E × A1. Thus,

Pic(S) ∼= Pic(E) 6= 0,

since E is an elliptic curve. This proves (1). In order to prove (2), choose a
derivation of K[x, y] of the form d = ∂x + h(x, y)∂y, with respect to which K[x, y]
is d-simple; see [1], [4], [16] or Example 4.2. Then, by Theorem 2.2, there exists
f(x, y) ∈ K[x, y] such that A2(d+f) is a maximal left ideal of A2, the Weyl algebra
over K[x, y]. Now consider the module

M = D(S)/D(S)(∆ + nzn−1f).

Since g is squarefree in one variable, it follows that

(g, d(g)) = (g, dg/dx) = (1).

Therefore, M is simple by Corollary 3.4. �

A similar construction can be made by taking the simple derivation defined in
[16] as a starting point. Instead of that, we give a more general example in the
same vein.

Example 4.2. Let g0, g1 ∈ K[y] be nonzero polynomials with deg(g1) ≥ deg(g0) > 1
and no common roots. If g = xg1 + g0 and d = ∂x + g∂y, then

(1) K[x, y] is d-simple;
(2) O(S) is ∆-simple, and
(3) there exists f ∈ K[x, y] such that D(S)/D(S)(∆ + nzn−1f) is a simple

nonholonomic D(S)-module.

Proof. Throughout the proof we denote the derivative of a polynomial q ∈ K[y]
with respect to y by q′. We have that

(g, d(g)) = (g, g1 + xgg′1) = (g, g1) = (g1, g0) = (1),

because these polynomials in one variable have no common roots. Thus, (2) follows
from (1) and Corollary 3.3; whilst (3) follows from (1), Theorem 2.2 and Corollary
3.4. Hence, it is enough to prove (1). The proof follows the approach introduced
by D. Jordan in [10].

We proceed by contradiction. Suppose that d has a stable nonconstant irre-
ducible polynomial f ∈ K[x, y], and write

f = an(y)xn + · · ·+ a1(y)x+ a0(y),
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where an, . . . , a0 ∈ K[y]. Thus, d(f) = hf , for some h ∈ K[x, y]. If n = 0 then

g
∂f

∂y
= hf ;

which implies that f divides g. But this is a contradiction since g is an irreducible
polynomial. Therefore, n ≥ 1. Thus,

(4.1) d(
f

an
) =

f

an

(
h− d(an)

an

)
.

In other words, f̂ = f/an ∈ K(y)[x] is stable under d. Let

f̂ = xn + bn−1x
n−1 + · · ·+ b1x+ b0,

where bj = aj/an ∈ K(y). The term of degree n of d(f̂) as a polynomial in x is

g1b
′
n−1x

n,

which has degree n in x. Since degx(f̂) = n, it follows from (4.1), that h−d(an)/an

must have degree zero as a polynomial in x. In particular, h ∈ K[y].
However, the term of degree n of d(f), as a polynomial in x, is

g1a
′
nx

n+1,

whilst hf has degree n in x. Since g1 6= 0, it follows that a′n = 0. Therefore, we
may assume, without loss of generality, that an = 1.

Equating the coefficients of the terms of degree j in x on both sides of d(f) = hf ,
we obtain

(4.2) (j + 1)aj+1 + g1a
′
j−1 + g0a

′
j = haj .

For j = n, this implies that h = g1a
′
n−1. Taking this into (4.2) we have that

(4.3) (j + 1)aj+1 + g1a
′
j−1 + g0a

′
j = g1a

′
n−1aj .

Suppose first that an−1 ∈ K. Hence,

h = g1a
′
n−1 = 0.

Taking this into (4.3) with j = n− 1, we get

n+ g1a
′
n−2 = 0,

which implies that n = 0, a contradiction. Thus, we may assume from now on that
a′n−1 6= 0.

We will now prove, by induction on k, the equality

(E(k)) deg(ak) = (n− k) deg(an−1),

for all −1 ≤ k ≤ n− 1. Since E(n) and E(n− 1) are obviously true, we show that
E(j − 1) is holds whenever E(k) is true for all j ≤ k ≤ n− 1.

From E(j) and E(j + 1) we get that deg(aj+1) ≤ deg(aj), and since deg(g1) ≥
deg(g0) > 1, it follows that

deg(aj+1) ≤ deg(g0a′j) < deg(g1a′n−1aj).

Hence, deg(g1a′j−1) = deg(g1a′n−1aj), so that

deg(a′j−1) = deg(a′n−1) + deg(aj).

Thus, by the induction hypothesis,

deg(aj−1) = deg(an−1) + deg(aj) = deg(an−1) + (n− j) deg(an−1),
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from which E(j − 1) is an immediate consequence. However, E(−1) gives

deg(a−1) = (n+ 1) deg(an−1),

which is a contradiction, since f is a polynomial. Therefore, d does not have a
stable polynomial with a′n−1 6= 0, and the proof is complete. �

Example 4.3. Let β ∈ C[x, y] be a generic homogeneous polynomial of degree
k ≥ 3, and let g be a linear factor of β. If b ∈ C\{0} and d = ((x+y)β+b)∂x +β∂y

then O(S) is a ∆-simple ring.

Proof. Let λ = x + y. By [5, Corollary 4.3, p. 460] the polynomial ring C[x, y] is
d-simple. Since β is generic, we may assume that g = α1x+α2y, where α1, α2 ∈ C
and α1 6= 0. Thus,

(g, d(g)) = (g, α1(λβ + b) + βα2).
Since g divides β, it follows that

(g, d(g)) = (g, α1b) = (1),

because α1b ∈ C \ {0}. The result now follows from Corollary 3.3. �

Finally, we give an example where the singularity set of the derivation is non-
empty, cf. [7]

Example 4.4. Suppose that n ≥ 5 is prime, and let

g = xyn−1 + y + xn−1.

If d is a derivation of C[x, y] without any stable height one ideals, but whose singular
set is nonempty, then there exists f ∈ O(S) such that

M = D(S)/D(S)(∆ + nzn−1f)

is a simple nonholonomic D(S)-module.

Proof. An easy computation shows that S is a smooth surface. Moreover, we know
from Theorem 3.2 that ∆ is a derivation of S, without stable height one ideals,
whose singular set is finite. However, since the singular set of d is nonempty, then
so is that of ∆. Finally, the result follows from [6, Theorem 3.5, p. 350] because
by [17, Theorem 4.1, p. 312] the Picard group of the surface S is zero. We need to
know that n is prime in order to apply this last result; see [17, Equation (4.7), p.
313]. �

The best known example of a derivation satisfying the conditions of Example 4.4
is

(yk−1x− 1)∂x + (yk − xk−1)∂y,

which was originally proposed by Jouanolou in [11, p. 157]. One can also produce
such examples using a computer, as shown in [8].
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