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Abstract. We propose an algorithm that uses Gröbner bases to compute the

resolution of the singularities of a foliation of the complex projective plane.

1. Introduction

Given the importance of the blowup morphism in algebraic geometry, it is not
surprising to find that it also plays a key rôle in the theory of holomorphic foliations.
The seminal result in this direction was proved by A. Seidenberg in [8]. He showed
that every foliation defined over a surface can be resolved by blowup into another
one whose singularities are reduced. See section 2 for the definitions of all the
technical terms on blowup of foliations used in the paper.

Although the existence of a resolution is what one most often needs, it is some-
times necessary to compute the blowups step by step. This turns out to be a very
laborious process, unless the foliation is very simple, and it immediately suggests
the idea of programming a computer to perform the blowups and compute the res-
olution. At first sight it seems that this should be quite straightforward. However,
a careful consideration of the problem shows that one must isolate the singulari-
ties before applying the blowup. Since the coordinates of the singularities will not
be rational numbers, except in very special cases, the program seems to call for a
combination of algebraic and numerical methods. This, of course, suffers from the
usual problems caused by approximating a singular point.

In this paper we propose a completely algebraic approach to the problem, based
on the fact that singularities with similar properties will behave similarly under
blowup. This enables us to handle the singularities in batches, so that all compu-
tations turn out to be exact.

In order to make it more precise, let F be a saturated foliation of the complex
projective plane defined by a 1-form with rational coefficients. Since F has a finite
number of singularities we may assume, without loss of generality, that they all
belong to the open set z 6= 0. Identifying this open set with C2 in the usual way, we
have that the x-coordinates of the singularities of F will be roots of a polynomial
f with rational coefficients.

Let d be a vector field that defines F in z 6= 0. The key to the algorithm is the
observation that, in order to compute the blowup of d at a singular point p it is
enough to know (1) the algebraic multiplity m of d at p, and (2) whether the m-jet
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During the preparation of this paper the first author was partially supported by a grant from

CNPq, and the second author by a scholarship from CNPq/PIBICT.

1



2 S. C. COUTINHO AND R. M. OLIVEIRA

of d at p is a multiple of the Euler vector field. Therefore, the x-coordinates of two
singularities of d for which (1) and (2) do not coincide must be roots of different
irreducible factors of f .

We use the same strategy to sort out the reduced singularities from the nonre-
duced ones at every stage of the resolution. This leads to two algorithms, called
StricTransform and reduced, that we have combined to get the full resolution.
The resolutionf algorithm returns information relative to the algebraic multiplic-
ity of the singularities, the invariance of the exceptional divisor, together with the
complete resolution tree.

These procedures have been implemented in the library resfolia.lib of the
computer algebra system Singular [4]. This library also contains a procedure
called hasDicritical that checks whether the given foliation is, or is not, dicritical.
This allows one to make effective use of the bound on the degree of an algebraic
solution of a foliation given in [1]. More details on the implementation are given in
section 5.

2. Foliations

In this section we discuss the basic facts about foliations of the complex projective
plane in a way that is suitable for the applications of the forthcoming sections.

Let x, y and z be homogeneous coordinates in P2, the complex projective plane.
A holomorphic foliation of P2 is defined by a 1-form ω = Adx+Bdy+Cdz, where
A, B and C are nonconstant homogeneous polynomials of the same degree that
satisfy the identity xA+ yB + zC = 0.

Let Uz be the open set of P2 defined by z 6= 0 and let α be the dehomogeneization
of ω with respect to z. Restricting the foliation of P2 defined by ω to Uz, we obtain
the foliation of C2 defined by α. Conversely, if πz : Uz → C2 is the map given by
πz[x : y : z] = (x/z, y/z), then ω = zkπ∗z(α), where k is chosen so as to clear the
poles of π∗z(α).

From now on we deal only with a foliation of C2 defined by a 1-from α =
adx + bdy, where a, b ∈ C[x, y]. Moreover, we assume that α is saturated, which
means gcd(a, b) = 1. A singularity of α is a common zero of a and b. The set of all
the singularities of α is denoted by Sing(α). It follows from Bézout’s theorem that
this is a finite set, because we are assuming that α is saturated.

Since the blowup is a local construction, we may restrict ourselves to a neigh-
bourhood V of one of the singularities p of α. Moreover, we assume that p is the
only singularity of α contained in V . In order to simplify the notation we will
choose the coordinates so that p = (0, 0). The blowup of V with centre at p is the
surface

Bp(V ) = {((x, y), [u : v]) ∈ V × P1 : xv = yu}.
The blowup map is the morphism φ : Bp(V )→ V given by φ((x, y), [u : v]) = (x, y).
Note that Bp(V ) is the union of two open affine sets isomorphic to V ; namely,
the sets given by u 6= 0 and v 6= 0, respectively. For instance, if v 6= 0, then the
isomorphism maps (u, y) ∈ V to ((yu, y), [u : 1]) ∈ Bp(V ). Identifying Bp(V )|v 6=0

with V in this way, the map φ restricted to Bp(V )|v 6=0 becomes φv(u, y) = (yu, y).
Similarly, we may identify Bp(V )|u 6=0 in a natural way with V such that φu(x, v) =
(x, xv) is the restriction of φ to Bp(V )|u 6=0. Note also that, outside the closed set

E = φ−1(p) = {(p, [u : v]) : u, v ∈ C2},
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the map φ is an isomorphism. More precisely, φ maps Bp(V ) \ E isomorphically
onto V \ {p}.

The blowup of the foliation of V determined by α|V is defined in terms of the
inverse image of α under φ. In order to give an explicit formula we consider the
foliation restricted to the open set v 6= 0. The case u 6= 0 may be dealt with
similarly.

First, we need some notation. Let f ∈ C[x, y], and denote by f = f0+f1+· · ·+fm
the decomposition of f into homogeneous components. Thus fj is a homogeneous
polynomial of degree j in x and y. Write

αk = akdx+ bkdy.

The algebraic multiplity of α = adx + bdy at p = (0, 0) is the smallest k ≥ 0 such
that αk 6= 0. In particular, the algebraic multiplicity of a form η at p ∈ C2 is zero
if and only if η is nonsingular at p.

A simple computation shows that

(2.1) φ∗v(α) = ya(uy, y)du+ (b(uy, y) + ua(uy, y))dy.

Setting ∆(x, y) = xa+ yb, and taking into account that a(0) = b(0) = 0, it follows
that φ∗v(α) = yβ, where

β = a(uy, y)du+
∆(uy, y)

y2
dy,

is a 1-form with polynomial coefficients. Suppose now that k > 0 is the algebraic
multiplicity of α at p. Then

∆(uy, y) = yk+1(∆k+1(u, 1) +
s∑

j=k+2

yj−(k+1)∆j(u, 1)).

Thus we can rewrite (2.1) as

φ∗v(α) = yk(yak(u, 1)du+ ∆k+1(u, 1)dy) + yk+1α̂,

where α̂ is a 1-form in u and y whose algebraic multiplicity is at least k + 1. The
strict transform of α under the pullback φv is the saturation of φ∗v(α), which is
equal to

β

yk−1
= yak(u, 1)du+ ∆k+1(u, 1)dy + yα̂ if ∆k+1 6= 0

or to
β

yk
= ak(u, 1)du+ ∆k+2(u, 1)dy + yα̃ if ∆k+1 = 0;

where α̃ is a 1-form of multiplicity greater than or equal to k + 2. Note that
∆k+1 = 0 if and only the exceptional divisor y = 0 is not invariant under the strict
transform of α. In this case we say that α is dicritical at 0.

Since we will have to iterate this process, it is necessary to determine the sin-
gularities of the blowup of α|V under φv. However, φv is an isomorphism outside
p, which is the only singularity of α in V . Therefore, the singularities of the strict
transform of α|V under φv must belong to the exceptional divisor E = φ−1(p). In
particular, all the singularities of this strict transform have their y-coordinate equal
to 0. Hence, the singularities are given by

∆k+1(u, 1) = 0 when the singularity is nondicritical(2.2)

ak(u, 1) = ∆k+2(u, 1) = 0 when the singularity is dicritical
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This is summed up in Table 1, for future reference. As before, we are assuming
that α has algebraic multiplicity k at the origin.

Case ∆k+1 Strict transform Singularities

dicritical 0 β/yk y = ak(u, 1) = ∆k+2(u, 1) = 0

nondicritical 6= 0 β/yk−1 y = ∆k+1(u, 1) = 0

Table 1. Blowup with respect to v 6= 0

Up to now we have only computed the blowup of α with respect to the open set
v 6= 0 of Bp(V ). We must now repeat the same computation with respect to u 6= 0.
On doing that we will find that the strict transform of α under the pullback φu is
equal to xη, where

η =
∆(x, xv)

x2
dx+ b(x, xv)dv.

Assuming now that α has algebraic multiplicity k at the origin, we have the following
table:

Case ∆k+1 Strict transform

dicritical 0 η/xk

nondicritical 6= 0 η/xk−1

Table 2. Blowup with respect to u 6= 0

This time we have not added the singularities to the table because the open set
u 6= 0 can only contribute one new singularity to the strict transform of the foliation
determined by α in V ; namely x = v = 0. Indeed, this is the only singularity that
belongs to the exceptional divisor and does not have nonzero v-coordinate.

Although we cannot completely remove the singularities of a foliation F by
blowup, we can simplify them so that the behaviour of the local holomorphic solu-
tions of F can be more easily described.

Suppose that p is a singularity of a 1-form α = adx + bdy of C2. Let λ1 and
λ2 be the eigenvalues of the 1-jet j1(α)(p) of the vector field b∂/∂x − a∂/∂y at p.
Then p is a reduced singularity of α if λ2 6= 0 and either

(1) λ1 = 0, or
(2) λ1/λ2 is not a positive rational number.

Given a singular holomorphic foliation of C2, we can always [8] resolve its sin-
gularities into reduced singularities by a succession of blowups. More precisely, if
p ∈ C2 is a singular point of α there is a resolution

Sn
πn−−→ Sn−1

πn−1−−−→ · · · π2−→ S1
π1−→ S0 = C2,

such that
(1) πi is a blowup of Si−1 with centre pi−1;
(2) α0 = α;
(3) p0 = p;
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(4) F0 = F ;
(5) if αi is the strict transform of αi−1 under πi, then pi is a singular point of

αi for i = 1, . . . , n− 1; and,
(6) if q ∈ Sn projects to p under π1π2 · · ·πn then, either q is a reduced singu-

larity of αn, or αn is nonsingular at q.
In order to determine when to stop the resolution process we must be able to

detect whether a given singularity of a 1-form is reduced. Since the problem is
local, we may assume that the singularity is p = (0, 0) and that the polynomial
1-form α = adx+ bdy has a singularity at p. Let λ1 and λ2 be the eigenvalues of

(2.3) j1(α) =
[
∂b/∂x ∂b/∂y
−∂a/∂x −∂a/∂y

]
,

at p. Denote by t(p) and d(p) the trace and determinant of this matrix at p.
If λ1 = λ2 = 0, the singularity is nonreduced. This is easy to detect because

the eigenvalues are both zero if and only if t(p) = d(p) = 0. Similarly, λ1 = 0 and
λ2 6= 0 can only occur if d(p) = 0 but t(p) 6= 0. However, in this case p is a reduced
singularity. We are left only with the case λ1λ2 6= 0. But,

t(p)2

d(p)
=

(λ1 + λ2)2

λ1λ2
=
λ1

λ2
+
λ2

λ1
+ 2.

Writing q = λ1/λ2 we find that

(2.4) d(p)q2 + (2d(p)− t(p)2)q + d(p) = 0.

Let
h(x, y, z) = d(x, y)w2 + (2d(x, y)− t(x, y)2)w + d(x, y).

In this case p is reduced if and only if h(p, w) = 0 has positive rational roots. Note
that we can also detect that one of the eigenvalues of α at p is zero by looking at
h. Indeed, in this case h(p, w) is a multiple of w.

In the next two sections we discuss strategies, based on the use of Gröbner basis,
to blowup a 1-form at its singularities, and to determine whether a given singularity
is reduced. These can then be combined into a full-fledged resolution algorithm.

3. Blowing up a 1-form

Let a = a(x, y) and b = b(x, y) be polynomials in the variables x and y, with
coefficients in Q[x0, . . . , xn], and let I be a 0-dimensional ideal of Q[x0, . . . , xn][x, y]
which contains a and b. The points of Z(I) ⊆ Cn+2 will be called the singularities
modulo I of the form α = adx+ bdy. Note that such a point can be written in the
form (p, x̃, ỹ), where p ∈ Cn+1 is a zero of I ∩Q[x0, . . . , xn]. Thus, if αp is the form
obtained specializing (x0, . . . , xn) to the point p, then (x̃, ỹ) a singularity of αp.

In order to simplify the formulae, it is convenient to work with the pullback α̃
of α under the translation that takes (0, 0) to (xn+1, yn+1). If

ã(x, y) = a(x+ xn+1, y + yn+1) and b̃(x, y) = b(x+ xn+1, y + yn+1),

then α̃ = ã(x, y)dx+ b̃(x, y)dy. Note that ã and b̃ are polynomials in the variables
x and y, with coefficients in Q[x0, . . . , xn, xn+1, yn+1].

We will assume, throughout this section, that I is a radical ideal of dimension
zero, in general position with respect to x. Let Ĩ the ideal obtained replacing x by
xn+1 and y by yn+1 in I.
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From now on we assume that the monomials of Q[x0, . . . , xn+1, yn+1] are ordered
by the lexicographical order with x0 > x1 > · · · > yn+1 > xn+1. By the hypothesis
on I, and [6, Theorem 3.7.25, p. 257], intersecting a reduced Gröbner basis of Ĩ
with Q[xn+1, yn+1] we get a set of the form

{yn+1 − g(xn+1), f(xn+1)}.
Thus we may replace yn+1 with g(xn+1) in α̃, which means that the singularities
of α̃ modulo Ĩ are completely determined by the ideal L ⊂ Q[x0, . . . , xn, xn+1]
obtained by replacing yn+1 by g(xn+1) in Ĩ. Moreover, since I is radical and has
dimension zero, so is L = Ĩ∩Q[x0, . . . , xn+1]. Therefore, we may reset the notation,
as follows

α = adx+ bdy is a 1-form with a, b ∈ Q[x0, . . . , xn, xn+1][x, y], and
I is a 0-dimensional radical ideal of Q[x0, . . . , xn, xn+1] that is in
general position with respect to x, and contains a(0, 0) and b(0, 0).
Moreover,

(f) = I ∩Q[xn+1].
We will now compute explicit formulae for the blowup of α at p = (0, 0) with

respect to the coordinate system defined, in the notation of section 2, by v 6= 0.
In order to simplify the notation we denote φv simply by φ. Thus φ : C2 → C2 is
given by φ(u, y) = (uy, y). Hence, φ∗(α) is given by equation (2.1). If ∆ = xa+ yb,
then

∆(uy, y)
y

= b(uy, y) + ua(uy, y).

Moreover, since a(0, 0) ≡ b(0, 0) ≡ 0 (mod I), it follows that y divides b(uy, y) +
ua(uy, y) modulo I. Therefore,

β1 = a(uy, y)du+
∆(uy, y)

y2
dy,

is well defined modulo I. In fact, since the coefficients of degree 1 of ∆(uy, y) are
always zero modulo I, we may as well delete them. Indeed, from now on, we always
adopt the policy of deleting the coefficients that we know to be always zero modulo
the ideal that defines the singularities. To make this task easier, we introduce the
following notation. Let F ∈ Q[x0, . . . , xn+1][x, y]. Using the decomposition of F in
its homogenous components with respect to the variables x and y, we have that

F (uy, y) =
s∑
j=0

yjFj(u, 1).

Then τyk (F ) will be the polynomial∑s
j=k y

jFj(u, 1)
yk

=
s∑
j=k

yj−kFj(u, 1).

τxk is analogously defined.
Denote by coeff(F ) the set of coefficients of F ∈ Q[x0, . . . , xn, xn+1][x, y] with

respect to x and y. Thus coeff(F ) ⊂ Q[x0, . . . , xn, xn+1]. Let

coeff(α) = {coeff(a), coeff(b)}.
If

(coeff(α1), I) = (coeff(∆2), I) = (1),
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then all the singularities of α are nondicritical and have algebraic multiplicity one.
However, if the algebraic multiplicity of α at any of its singularities is greater than
one, or the singularity is dicritical, then we still have to factor a power of y from
β. In order to do this we must be able to sort the singularities of α by their
multiplicities, taking also into account whether they are dicritical or nondicritical.
We do this using a strategy that relies on the following result.

Proposition 3.1. Let I and J be 0-dimensional ideals of Q[x0, . . . , xn, xn+1]. As-
sume that J is a radical ideal in general position with respect to xn+1, and let q be
the generator of J ∩ Q[xn+1]. If q is irreducible and Z(I) ∩ Z(J) 6= ∅, then I ≡ 0
(mod J).

Proof. Since Z(I) ∩ Z(J) 6= ∅ it follows that (I, J) ( (1). Therefore,

(q) ⊆ (I, J) ∩Q[xn+1] ( (1).

However, q is irreducible in Q[xn+1], so that (q) = (I, J) ∩ Q[xn+1]. Since J is in
general position with respect to xn+1, it follows that Z(I, J) = Z(J). Hence, by
the Nullstellensatz,

J ⊆
√

(I, J) =
√
J = J,

because J is radical. It follows that J =
√

(I, J). In particular, I ⊆ J , which
implies the required result. �

Now let q be an irreducible factor of f in Q[xn+1], and consider the ideal J =
(I, q). Recall that I is radical, 0-dimensional, and in general position with respect to
xn+1, and that q is irreducible. Thus, J is radical and 0-dimensional. According to
Proposition 3.1, if there is a singularity of α modulo J whose algebraic multiplicity is
greater than k, then (coeff(αk)) ≡ 0 (mod J). In particular, all these singularities
have the same multiplicity. Therefore, the algebraic multiplicity of the singularities
of α modulo J is equal to the smallest m for which (coeff(αm)) 6≡ 0 (mod J),
which is easy to find by a simple search.

Before we proceed to compute the strict transform of α at its singularities modulo
J , we must find if any of them are dicritical. Once again, it follows from Propo-
sition 3.1, that the singularities of α modulo J are either all of them dicritical, or
nondicritical. Moreover, if these singularities have multiplicity m then,

coeff(∆m+1) ≡ 0 (mod J) when the singularities are dicritical

coeff(∆m+1) 6≡ 0 (mod J) when the singularities are nondicritical

Assuming that the singularities of α modulo J have multiplicity m, we sum up all
this in Table 3.

Singularity type coeff(∆m+1) (mod J) Strict Transform

dicritical 0 τym(β)

nondicritical 6= 0 τym−1(β)

Table 3. Strict transform when v 6= 0

We now turn to the problem of detecting the singularities at which α is nonre-
duced. We keep the notation that we have been using in the previous discussion.
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Denote by t the trace and d the determinant of the 1-jet j1(α) at (0, 0), defined in
(2.3). Note that t, d ∈ Q[x0, . . . , xn, xn+1].

The first step consists in isolating the degenerate singularities of α, which cor-
respond to the zeroes of (I, t, d). Since this ideal is in general position with respect
to xn+1, the degenerate singularities of α are those whose xn+1-coordinate is a root
of γ1 = 0, where γ1 is the generator of

√
(I, t, d)∩Q[xn+1]. If α does not have any

degenerate singularities then γ1 = 1.
Turning now to the nondegenerate singularities, let

h = dw2 + (2d− t2)w + d ∈ Q[x0, . . . , xn, xn+1][w],

and compute the generator m(w) of
√

(I, h) ∩ Q[w]. Then every characteristic
exponent of α at one of its singularities is a root of m(w), a one variable polynomial.
Note that if an eigenvalue of α vanishes at one of its singularities, then 0 will be a
root of m(w).

The analysis at the end of section 2 shows that α has a nondegenerate and
nonreduced singularity modulo I if and only if

−c2
c1

=
−`(0)

`(1)− `(0)
> 0,

where ` = c1w+ c2 is a linear factor of m(w) over Q. Moreover, if ` is such a factor
then the xn+1-coordinates of the singularities of α modulo I with characteristic
exponent −c2/c1 are the zeroes of the ideal (h(−c2/c1), I).

This allows us to sort the singularities of α that are reduced from those that
are nonreduced. Let r1, . . . , rs be the non-negative rational roots of m(w). The
nonreduced singularities of α are the zeroes of (I, h(r1) · · ·h(rs)γ1). To compute
the reduced singularities we first find the generator γ2 of

√
(I, h(r1) · · ·h(rs)γ1) ∩

Q[xn+1]. The reduced singularities are now the zeroes of (I, f/γ2), where f is the
generator of I ∩Q[xn+1].

4. The algorithms

In this section we describe in detail the three algorithms that will be combined to
produce the resolution algorithm. The first of these algorithms prepares the output
that will be used by the other two. The second sorts out the reduced singularities
from those that are nonreduced, while the third one computes the actual blowup
at the nonreduced singularities.

Algorithm: precalc

Input: a 1-form α = adx + bdy with a, b ∈ Q[x0, . . . , xn][x, y] and an ideal I of
Q[x0, . . . , xn, x, y], which contains a and b.

Output: a list whose entries are:
• the 1-form α, with x translated by xn+1 and y translated by yn+1,
• the ideal obtained replacing x by xn+1 in

√
I ∩Q[x0, . . . , xn, x], and

• the polynomial ∆ = xa+ yb.

Step 1: If dim(I) > 0 as an ideal in the ring Q[x0, . . . , xn][x, y] return form is
not saturated and stop.

Step 2: Let I =
√
I.
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Step 3: Check whether I is in general position with respect to x. If it is not, let
the user know that it is not, choose a map of the form

φ(x0, . . . , xn, x, y) = (x0, . . . , xn, x+
n∑
i=0

cixi + cn+1y, y),

where c0, . . . , cn+1 ∈ Q, and replace I by φ∗(I) and α by φ∗(α). Repeat
this step until I is in general position. Note that x0, . . . , xn play the role
of constants, so far as α is concerned.

Step 4: Make x = xn+1 and y = yn+1 in I.
Step 5: Translate α by (xn+1, yn+1).
Step 6: Compute ∆ = xa+ yb.
Step 7: Compute the reduced Gröbner basis G of I in Q[x0, . . . , xn][xn+1, yn+1],

with respect to LEX, assuming that x0 > · · · > xn > yn+1 > xn+1. Let

{f, yn+1 − g(xn+1)} = G ∩Q[xn+1, yn+1].

Step 8: Replace yn+1 by g(xn+1) in I, α, and ∆. Thus α becomes a 1-form, and
∆ a polynomial, over Q in the variables x0, . . . , xn, xn+1, x, y.

Step 9: Return α, I, and ∆.

Algorithm: reduced

Input: a 1-form α = adx+ bdy with a, b ∈ Q[x0, . . . , xn+1][x, y], ∆ = xa+ yb, and
an ideal I of Q[x0, . . . , xn+1], as in the output of precalc. Moreover, it is assumed
that I is a radical ideal that is in general position with respect to xn+1.

Output: a list [Inr, Ir,m, f ], where Inr and Ir are ideals of Q[x0, . . . , xn, xn+1], m
is a polynomial of Q[w], and f is a polynomial of Q[xn+1], such that:

• Z(Ir) is the set of reduced singularities of α,
• m is the squarefree polynomial satisfied by the ratios of eigenvalues of the

1-jet of α at its nondegenerate singularities,
• Z(Inr) is the set of nonreduced singularities of α, and
• f is a generator of

√
Inr ∩Q[xn+1].

Step 1: If I = (1) then Inr = Ir = (1).
Step 2: Let d and t be the determinant and trace at (0, 0) of the jacobian of

(b,−a) with respect to x and y. These are polynomials with coefficients in
Q[x0, . . . , xn, xn+1].

Step 3: Let L be the ideal of Q[x0, . . . , xn, xn+1] generated by I, t and d.
Step 4: If L 6= (1) compute the generator γ1 6= 1 of

√
L ∩Q[xn+1]. If L = (1) put

γ1 = 1.
Step 5: If γ1 = f return the list [I, {1}, 1, f ] and stop.
Step 6: Let h(w) = dw2+(2d−t2)w+d. This is a polynomial in w with coefficients

in Q[x0, . . . , xn, xn+1].
Step 7: Consider the ideal (I, h, f/γ1) of Q[x0, . . . , xn, xn+1][w], and compute the

generator m of
√

(I, h, f/γ1) ∩Q[w].
Step 8: Factorize m in Q[w].
Step 9: For each linear factor ` of m on Q[w] do:
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If

q =
−`(0)

`(1)− `(0)
> 0

then γ1 = γ1 · h(q).
Step 10: Let Inr = (I, γ1).
Step 11: Compute the generator γ2 of

√
Inr ∩Q[xn+1], and let Ir = (I, f/γ2).

Step 12: Return the list [Inr, Ir,m, γ2].

Algorithm: StrictTransform

Input: a 1-form α = adx+ bdy with a, b ∈ Q[x0, . . . , xn+1][x, y], ∆ = xa+ yb, the
ideal Inr of Q[x0, . . . , xn+1], which defines the nonreduced singularities of α, and
the polynomial f which generates Inr ∩Q[xn+1]. Moreover, it is assumed that I is
a radical ideal that is in general position with respect to xn+1.

Output: a list whose elements are the strict transforms of the blowups of α at the
singular points of α modulo I.

Step 1: Compute

β = a(uy, y)du+
∆(uy, y)

y2
dy and η =

∆(x, xv)
x2

dx+ b(x, xv)dv.

Step 2: Initialize both L and S as empty lists. The list L will keep the blowups
of α, while S retains information on the singularities of α.

Step 3: If f ∈ Q stop, since there are no nonreduced singularities left to be
blownup.

Step 4: Factorize f as a polynomial in Q[xn+1].
Step 5: For every nonconstant irreducible factor q of f , do:

• Initialize m = 1 and consider the ideal (I, q) of Q[x0, . . . , xn+1].
• While (coeff(αm)) ≡ 0 (mod (I, q)) let

m = m+ 1, β = τy1 (β), and η = τx1 (η).

• Compute the reduction δ of coeff(∆m+1) modulo (I, q).
• If δ = 0, insert

[τy1 (β), (I, q, am(u, 1),∆m+2(u, 1), y)] and [τx1 (η), (I, q, x, v)]

into L and [I, q, dicritical] into S.
• If δ 6= 0, insert

[β, (I, q,∆m+1(u, 1), y)] and [η, (I, q, x, v)]

into L and [I, q, nondicritical] into S.
Step 6: Return L and S.

We combined these three procedures in an algorithm, called resolutionf, whose
input is a 1-form α with coefficients in C[x, y], and an ideal I of the same ring. This
algorithm applies the sequence of three procedures described above recursively, in
order to compute the resolution tree of α at Sing(α) ∩ Z(I). The output is a
list which contains details about the various 1-forms encountered in the tree, their
singularities, and the forms derived from them. Each leaf of the tree is labelled
by a form β and an ideal J , such that either β has no singularities at Z(J), or
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Z(J) ∩ Sing(β) consists only of reduced singularities. By [8] this algorithm always
stops. The construction of the resolution tree applies a breadth-first strategy.

There is one final point that should be stressed. As implemented, these algo-
rithms allow the user to restrict the blowups to any set of singularities that can
be defined as the intersection of curves with rational coefficients. Indeed, one need
only add the equations of these curves to the ideal I that appears as part of the
input of all the algorithms.

5. Implementation and experimental tests

The algorithms discussed in the previous section have been implemented as part
of a library (called resfolia.lib) designed to be used with the computer algebra
system Singular (version 2-0-5), see [4] and [3]. Besides the four algorithms
described in section 4, the library contains two other main algorithms, called blowup
and hasDicritical. The former computes the blowup of a given form at each one
of its singularities and stops. In other words, it computes only the height one nodes
of the resolution tree. The latter algorithm computes the resolution tree looking
for a dicritical singularity, and stops if one is found, or if the resolution comes to
an end.

The algorithm blowup allows the user to choose both the variables required to
represent the input and output forms. However, this would not be practicable in
resolutionf, since it will typically produce trees with height well over 10. Thus,
we have always used the same variables when defining a form and its blowups.
More precisely, if β is a 1-form associated to a node of height k of the resolution
tree then it is written in terms of x, y, and x0, . . . , xk−1. Of course, the xi variables
are only used to pin down the singularities of β; so these variables can be thought
of as constants as far as the blowup is concerned. For the sake of consistence, we
decided to keep these variables in the ring even when they define a rational number.
This also helps to identify the height in the resolution tree of any given node. Note
that the variables of the input form are always changed to x and y, independently
of the variables originally chosen by the user. This convention may seen somewhat
strange at first, but it has proved to be quite simple and memory saving.

Keeping to the notation of the previous paragraph, the strict transforms of β will
be written in terms of the variables x0, . . . , xk and the pair x and y, independently
of the open set where the blowup has been computed. In order to allow the user to
identify the corresponding open set we also return the formula that has been used
to compute the blowup; see section 3.

The hasDicritical algorithm is essentially the same as resolutionf. The only
difference is that, although it may be necessary to generate the whole resolution
tree, we need not keep any of the nodes that correspond to forms that have already
been blown up. Thus, we can save a lot of memory, which allows the algorithm
to reach deeper into the resolution tree. Indeed, the most frequent cause of failure
of resolutionf is lack of memory. This is not surprising since we have to store a
growing number of forms and ideals defined over rings whose number of variables
is also increasing.

There are very few complete resolution trees published in the literature on holo-
morphic foliations. Some of these appear in [7, Appendix B], and have been repli-
cated using our algorithms. The one in Figure 1 corresponds to the 1-form

ω0 = (−80x2 − 60xy + 80y)dx+ (36x2 − 32x− y)dy.
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and was generated from the output of resolutionf. This output consists of a
series of blocks of which the following is a typical example:

tag: 0-3-2
form: (-160*x^3*y^2-381/4*x^2*y^2-1053/320*x*y^2
-51200/27*x*y-1701/81920*y^2 -80/9*y)*dx + (-80*x^4*y
-123/4*x^3*y-1971/1280*x^2*y- 25600/27*x^2-1701/81920*x*y
+80/9*x)*dy
open set: (x,x*y)
nonreduced dicritical:

x,320*x1-9,27*x0-32,M(1)
nonreduced nondicritical:

1
reduced:

1

The tag describes the position of a given node in the tree, with respect to its
ancestors. Thus 0-3-2 is a son of 0-3, and grandson of 0. The next line contains the
1-form that defines the foliation at this point of the resolution tree. Note that the
form has been written in terms of the variables x and y, as explained above. After
the form comes the formula used to compute the blowup; which allows us to identify
the open set of P1 where the blowup was performed. This is followed by information
on the singularities of the form. More precisely, we give the ideals that define the
sets of nonreduced (dicritical and nondicritical), and reduced singularities. The
ideals are written in terms of the variables x0, . . . , xk-1, x, where k is the height
of the vertex under consideration. In the example above, the vertex has height 3,
and the ideal of nonreduced singularities (the only one that is nontrivial) is written
in terms of x0, x1 and x. Note that 27*x0-32 implies that x0 = 32/27. However, as
we have already mentioned, we chose to accumulate in the ideals all the polyomials
when going from one height to the next, even when an xi variable corresponds only
to a rational point. Finally, the M(k) after the ideal generators indicate that the
sigularities defined by this ideal have multiplicity k in the given 1-form. Summing
up, the origin is the only singularity of the 1-form

(−160x3y2 − 381
4
x2y2 − 1053

320
xy2 − 51200

27
xy − 1701

81920
y2 − 80

9
y)dx+

(−80x4y − 123
4
x3y − 1971

1280
x2y − 25600

27
x2 − 1701

81920
xy +

80
9
x)dy.

Moreover, it is a dicritical singularity of multiplicity one.
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Figure 1

In order to simplify the representation of the resolution tree in Figure 1, we have
used a number of conventions that we now explain. First, only one equation is given
for the ideal that defines the singularity to be blownup at any given node v. Thus,
the edge below a node v of height k is labelled only by a polyomial qk in xk. After
all, the other equations already appear in the tree, since they are used to define the
singularities of the forms that label the ancestors of v. More precisely, if the edges
on a path from the root to v are labelled by the polynomials q0(x0), . . . , qk−1(xk−1),
then the singular set of the form β that is attached to v is given by

q0(x0) = · · · = qk−1(xk−1) = qk(x) = 0.
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Note that xk has been replaced by x in qk to conform to our convention that β is
always a form in x and y.

The only true nodes of the tree are those labelled by 1-forms. However, we also
introduced “pseudonodes”, where a given edge branches to indicate that the form
is blownup at the two open sets of Bp(Uz). Every time there is such a branch point,
the left hand node corresponds to the form blownup at the open set v 6= 0, and the
right hand side to u 6= 0, in the notation of section 3.

The 1-forms that define the foliations at the various nodes are:

ω02 = (−24xy − 80x− y2 + 48y)dx+ (36x2 − xy − 32x)dy

ω03 = (−80x2y2 − 60xy2 − 25600
27

xy + 80/9y)dx+

+ (−80x3y − 24x2y − 25600
27

x2 +
560
9
x− 1)dy

ω021 = (−24xy2 − 80xy − y2 + 48y)dx+ (12x2y − 80x2 − 2xy + 16x)dy

ω032 = (−160x3y2 − 381
4
x2y2 − 1053

320
xy2 − 51200

27
xy − 1701

81920
y2 − 80

9
y)dx

+ (−80x4y − 123
4
x3y − 1971

1280
x2y − 25600

27
x2 − 1701

81920
xy + 80/9x)dy

ω0212 = (−12x2y2 − 3xy2 − 160xy +
2
25
y2 + 16y)dx+

(12x3y +
14
5
x2y − 80x2 +

2
25
xy − 16x)dy

ω0321 = (−240x3y2 − 126x2y2 − 6183
1280

xy2 − 1701
40960

y2 − 25600
9

y)dx+

+ (−80x4y − 123
4
x3y − 1971

1280
x2y − 1701

81920
xy − 25600

27
x+

80
9

)dy

ω02121 = (−1
5
xy2 +

4
2

5y2 − 240y)dx+ (12x3y +
14
5
x2y +

2
25
xy − 80x− 16)dy.

In order to test the performance of resolutionf, we computed the resolution
trees, up to height 10, of 50 randomly generated foliations of degree 2 belonging to
each one of the three families that are defined over Uz as follows. Let λ and µ be
homogeneous polynomials of degree one, and let a1, . . . , a4, c1, c2, c3 be constants.
Then, for f = λµ+ a1λ+ a2µ+ a3, we have

Family 1: (c1(λ+ a2)2 + c2f)dx+ fdy,
Family 2: (c1f + c2(λ+ a2))dx+ fdy;

and for f = (λ+ a1)2 + a2µ+ a3, we have
Family 3: (c1f + c2λ+ c3)dx+ fdy.
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For the significance of these families see [2]. Note that the singularities of a generic
foliation of any of these types belongs to the line at infinity. The results we obtained
are summed up in Table 4.

Total Average number of Average
Family time number of nodes per nodes per resolutions time per

resolutions second resolution per second resolution

1 30s 72 2.40 1.44 1.64 0.60s

2 8s 158 19.75 3.16 6.25 0.16s

3 16s 348 21.75 6.96 3.12 0.32s

Table 4. 50 foliations were tested for each family

One should not forget that the data of Table 4 was not obtained from truly
random forms. Indeed, although the forms have been randomly generated, they
belong to rather simple families of very small degree. A truly random form of
slightly bigger degree may easily stall the program at the root of the tree.

A more or less random test of the procedure hasDicritical proved more dificult,
because we did not find in the literature a sufficiently nice family of foliations
with dicritical singularities at various heights. Thus, we devised our own test, by
considering the form

ωc1,c2 = c1x
3ydx+ (y3 − xy − c2x4)dy.

D. Jordan showed in [5] that the only algebraic solution of ω1,1 is the line at infinity.
Since the program had already shown that ω1,1 had a dicritical singularity at height
8, it seemed reasonable to turn to this family for our tests.

Height of the tree Number of foliations

3 2

4 8

5 14

6 14

7 6

8 28

7 14

10 4

Table 5. The 90 forms with a dicritical singularity up to height 10.

We tested the 400 forms ωc1,c2 with integer parameters (c1, c2) ∈ [−10, 10] ×
[−10, 10]. The program searched for dicritical singularities up to height 10, and
kept a tally of how many of the forms had its first singularity at each height up
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to 10. In fact, only 90 of the 400 forms tested had a dicritical singularity within
this range. Of course this does not mean that the other 310 forms are free from
dicritical singularities, since we did not generate the whole resolution tree. The
results are displayed in Table 5. The second column of row k of this table shows
the number of forms, out of the 400, whose first dicritical singularities appears at
height k. The table begins with height 3 because we listed only the heights with a
nonzero number of dicritical singularities.

Finally, it should be observed that Singular does not allow the user to cre-
ate new types, nor does it have a special type for differential forms. We got
around this problem by writing a Singular library (called forms.lib) to han-
dle the operations with one and two forms, that were defined as polynomials. For
example, a 1-form in x and y corresponds to a polynomial in the variables x, y
and dx, dy. This library, and also resfolia.lib, can be obtained from the URL
http://www.dcc.ufrj.br/~collier/folia.html.
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