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Submited version

Abstract. We use foliations of multiprojective spaces defined by hamiltonian
functions on the underlying affine space to prove the three dimensional case of a

conjecture of Bernstein and Lunts, according to which the symbol of a generic

first-order differential operator gives rise to a hypersurface of the cotangent
bundle which does not contain involutive conical subvarieties apart from the

zero section and fibres of the bundle.

1. Introduction

Although this paper is concerned with foliations on multiprojective spaces in-
duced by a hamiltonian function of the underlying affine space, its motivation lies
in the theory of D-modules, and it is with this theory that we begin.

A much studied mathematical object is the ring of differential operators of the
polynomial algebra in n variables over the complex numbers. This ring, known
as the Weyl algebra, and denoted by An, has a very interesting representation
theory. Our point of departure is the Bernstein inequality, according to which the
Gelfand-Kirillov dimension of a finitely generated An-module cannot be less than
n. The An-modules with dimension exactly n are called holonomic and have been
intensively studied because of their many applications in representation theory, the
theory of partial differential equations, and various other areas of mathematics; see,
for example, [4], [5] and [12].

For a time, in the early 1980s, some experts believed that all irreducible An-
modules were holonomic. This was disproved by J. T. Stafford in 1985 with an
explicit construction of an irreducible An-module of dimension 2n−1, for all n ≥ 2;
see [17]. In 1988, J. Bernstein and V. Lunts described a geometric construction of
whole families of nonholonomic irreducible modules over the Weyl algebra. In fact,
they gave two different constructions, the second of which is the one that concerns
us here; see [3, p.236ff].

Both Stafford’s construction, and the second one in the paper by Bernstein and
Lunts, proceed by adding a carefully chosen polynomial to a derivation of the
polynomial ring. The resulting first-order differential operator of An generates a
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maximal left ideal and the quotient module has Gelfand-Kirillov dimension 2n− 1.
Thus, if n ≥ 2, it cannot be holonomic.

The derivation used by Stafford is very special and has no singularities in Cn;
Bernstein and Lunts, on the other hand, start from a generic derivation, which will
be necessarily singular. While the proof that Stafford’s example works is computa-
tional, the one by Bernstein and Lunts is geometric, and depends on the nonexis-
tence of certain subvarieties (called involutive conical) of the hypersurface defined
by the principal symbol of a generic derivation in the cotangent bundle T ∗Cn. There
is a glitch, though. They were able to prove this nonexistence result only for n = 2.
See section 7 for more background and a detailed statement of the conjecture.

The aim of this paper is to extend our knowledge of the conjecture of Bernstein
and Lunts by proving it for n = 3. In order to do this we projectivize the cotangent
bundle T ∗C3 ∼= C3 × C3 as P3 × P2, by taking into account that the varieties
that we are dealing with are conical; that is, homogeneous in the fibres of T ∗C3.
The symbol of a derivation gives rise to a hamiltonian function f that is linear
in these fibres. The corresponding hamiltonian vector field determines a foliation
of the multiprojective space. The core of the paper is dedicated to showing that
the hypersurface defined in P3 × P2 by the homogenization of f does not have any
invariant subvarieties of codimension one, apart from H∞ × P2, where H∞ is the
hyperplane at infinity of P3.

The paper is divided into seven sections. Section 2 contains a number of ele-
mentary results of commutative algebra that will be used throughout the paper. In
section 3, besides establishing the notation to be used in the paper, we introduce
foliations in multiprojective spaces and define those that are induced from hamil-
tonian functions. The proofs of the main results are split between section 5, which
contains two key lemmas, and sections 4 and 6 which contain the proofs of the
theorems on the nonexistence of invariant subvarieties. Finally, section 7 begins
with a description of the background to the conjecture of Bernstein and Lunts and
ends with a proof of the conjecture for n = 3.

2. Preliminaries

If A is a commutative ring, we denote by A[x] the polynomial ring A[x1, . . . , xn].

2.1. Prime ideals. We begin with some criteria under which certain ideals of a
polynomial ring are prime. The following notation will be in force to the end of the
section:

m ≥ 2 is an integer, a1, . . . am are elements of a domain A and

f = a1y1 + · · ·+ amym ∈ A[y] = A[y1, . . . , ym].

Proposition 2.1. Let m = 2. If (a1) is a radical ideal of A and a2 does not belong
to any of the primes minimal over (a1) then (f) is saturated in A[y1, y2] with respect
to the multiplicative set of powers of a1.

Proof. First of all, {f} is a Gröbner basis of (f) in A[y1, y2] with respect to the
lexicographic order with y1 > y2. Therefore, by [1, Proposition 4.4.4, p.240] the
desired result will follow if we prove that

(f)e ∩A[y1, y2] = (f),
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where (f)e denotes the extension of (f) to the ring Aa1 , which is the localization
of A at the powers of a1. Suppose, by contradiction, that this is false. Then, there
exists g ∈ A[y1, y2] such that

(2.1) a−1
1 gf ∈ A[y1, y2] and a−1

1 g /∈ A[y1, y2].

In particular, at least one of the monomials of g has a coefficient, which we denote
by c, such that a−1

1 c /∈ A. On the other hand, (2.1) implies that gf ∈ A[y1, y2]a1;
so ca2 ∈ (a1), which is where we need to assume that m = 2. Thus, it follows
that c ∈ (a1), because (a1) is radical and a2 is not contained in any of the primes
minimal over (a1). But this means that a−1

1 c ∈ A, which is a contradiction. �

Corollary 2.2. Let m = 3 and n ≥ 2 be integers and consider the ring A =
C[x1, x2, . . . , xn, y1, y2, y3]. If a1 is irreducible, (a1, a2) is a radical ideal of A and a3

is not contained in the primes minimal over (a1, a2), then the ideal (a1, a2y2 +a3y3)
is prime in A.

Proof. Since (a1) is a radical ideal of A, the ring D = A/(a1) is a domain. Denoting
by g the image in D[y1, y2, y3] of an element g ∈ A, we have that if I = (a1, a2y2 +
a3y3) then

I = (a2y2 + a3y3)
in D[y] = D[y1, y2, y3]. Let S be the multiplicative set of powers of a2 and denote
by Q the ring of fractions of D[y] with respect to S. By Proposition 2.1, I is
saturated in D[y1, y2, y3]. Hence, the natural map

D[x]/I → Q[x]/QI

is injective. However, the image of y2 + a3y3/a2 is a generator of QI over Q, so
that

D[x]/I → Q[x]/QI ∼= Q[y3]
which is a domain. Hence, D[x]/I is itself a domain, which implies that I is a prime
ideal of D[x]. Therefore, I is prime ideal, as we wished to prove. �

For the next two results we assume also thatA = C[x1, . . . , xn] and that a1, . . . am
are polynomials of degree k ≥ 2. A polynomial which is homogeneous with respect
to the x variables and also homogeneous with respect to the y variables is called
bihomogeneous.

Proposition 2.3. If (a1) is a prime ideal of C[x] and a2 /∈ (a1), then f is irre-
ducible in C[x,y].

Proof. The hypotheses imply that gcd(a1, a2) = 1. However, f has degree one as a
polynomial in the ys, so any factorization of f will have to be of the form f = cf̂
for some c ∈ C[x]. But this implies that c divides gcd(a1, a2) = 1. Therefore, c ∈ C
and f is irreducible. �

Proposition 2.4. If m ≤ n and a1, . . . , am are homogeneous, then h =
∑m
i=1 xiyi

is irreducible modulo f .

Proof. Suppose, by contradiction, that h ≡ g1g2 (mod f), where g1, g2 ∈ C[x,y].
Thus, h = g1g2 + fq, for some q ∈ C[x,y]. Since h and f are bihomogeneous, we
may assume that so are g1, g2 and q. However, h has total degree 2, while the total
degree of f is at least 3. Therefore, q = 0 and h = g1g2. But h is irreducible in
C[x,y], so either g1 or g2 has to be constant. Hence, h is irreducible modulo f . �
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2.2. Factorial domains. We now proceed to prove that some rings that appear
in later sections have the property of unique factorization into primes.

Theorem 2.5. Let A be a factorial ring, and assume that:

(1) m = 3;
(2) (a1) is a prime ideal of A;
(3) a3 does not belong to the primes minimal over (a1, a2);

Then, A[y]/(f) is a factorial ring.

Proof. By Proposition 2.3, f is prime in A[y]; so B = A[y]/(f) is a domain. But by
Nagata’s factoriality lemma, if Ba1 is a factorial domain and a1 is prime in B then
B is factorial; see [16, Théoréme 5, p. 31] or [9, Lemma 19.20, p. 487]. However,

Ba1
∼= Aa1 [y2, y3]

is a factorial domain by [16, Théoréme 4, p. 29 and Corollaire 1, p. 23]. On the
other hand, (a1, f) = (a1, a2y2 +a3y3) is a prime ideal by Corollary 2.2. Therefore,

B/(a1) ∼= A[y2, y3]/(a1, a2y2 + a3y3)

is a domain. Hence, (a1) is prime in B and the desired result follows. �

Corollary 2.6. If m = 3 and h =
∑m
i=1 xiyi, then C[x,y]/(h) is a factorial do-

main.

Proof. We need only check that the hypotheses of Theorem 2.5 hold for h. However,
the coefficient of y1 in h is x1, which is clearly irreducible in C[x]. On the other
hand, (x1, x2) is prime and does not contain x3, so (3) also holds. �

3. Foliations

In this section we collect a number of results on foliations that are used later in
the paper. The notation that will be in force throughout the paper is established
in §3.3.

3.1. Basic definitions. We briefly review those basic definitions from the theory
of holomorphic foliations that will be required in the paper. Let X be a smooth
complex projective variety of dimension at least 2. A foliation (of dimension one)
on X is an OX -homomorphism

ξ : Ω1
X → L

where L is a line bundle over X and Ω1
X is the sheaf of Kähler differentials over X.

The foliation ξ can also be defined by

(1) the OX -homomorphism ξ∨ : L∨ → ΘX ; or
(2) a global section of ΘX ⊗ L;

where L∨ = HomOX
(L,OX). We swap between these definitions, whenever needed,

without further comment. Moreover, we do not always distinguish between a foli-
ation and the map or section ξ that is used to define it.

A singularity of ξ is a point x ∈ X such that ξ is not surjective at x. Equivalently,
x ∈ X is a singularity of ξ if ΘX/Im(ξ∨) is not free at x. The set of all singularities
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of ξ is denoted by Sing(ξ). A subscheme Y of X is invariant under ξ if there exists
a map Ω1

Y → L|Y such that the diagram

Ω1
X |Y

��

ξ|Y // L|Y

Ω1
Y

<<

is commutative. For more details see [7].

3.2. Multiprojective spaces. We now turn to the caseX = Pm×Pn. For j = 1, 2,
let πj be the projection on the jth component of X. A line bundle L of Pm × Pn
has the form

(3.1) L = π∗1(OPm(r))⊗OX
π∗2(OPn(s)),

for integers r and s, and

ΘPm×Pn ∼= π∗1(ΘPm)⊕ π∗2(ΘPn).

Therefore, a foliation ξ of Pm × Pn is a global section of the sheaf

(π∗1 (ΘPm(r))⊗OX
π∗2 (OPn(s)))⊕ (π∗1 (OPm(r))⊗OX

π∗2 (ΘPn(s)))

where we are assuming that both r and s are non-negative integers. Denoting by
x1, . . . , xm+1 the homogeneous coordinates of Pm and by y1, . . . , yn+1 those of Pn,
a section of the above sheaf can be written as an operator

ξ =
m+1∑
i=1

ai
∂

∂xi
+
n+1∑
j=1

bj
∂

∂yj

where ai and bj are bihomogeneous polynomials of C[x1, . . . , xm+1, y1, . . . , yn+1] of
bidegrees (r + 1, s) and (r, s + 1), respectively. In this form, the singularities of ξ
are the zeroes of the 2× 2 minors of the matrices[

a1 a2 · · · am+1

x1 x2 · · · xm+1

]
and

[
b1 b2 · · · bn+1

y1 y2 · · · yn+1

]
.

A closed set Z of Pm × Pn is invariant under ξ if and only if

ξ(f) ∈ I(Z) for all f ∈ I(Z);

where I(Z) denotes the ideal of Z in C[x1, . . . , xm+1, y1, . . . , yn+1]. We finish with
a proposition that relates closed sets invariant under ξ with singularities of the
foliation.

Proposition 3.1. Let ξ be as above and let Z be a closed subscheme invariant
under ξ. If Sing(ξ) has codimension at least two in Pm × Pn then Sing(ξ) ∩Z 6= ∅.

Proof. The result will follow from [7, Proposition 5.3, p. 129] if we prove that
ω∨Pm×Pn ⊗ L is ample, with L as in (3.1). But

ωPm×Pn = π∗1O(−m− 1)⊗OX
π∗2O(−n− 1)

so that
ω∨Pm×Pn ⊗ L ∼= π∗1O(m+ 1 + r)⊗OX

π∗2O(n+ 1 + s).
Since r and s are non-negative, the required hypothesis is verified and the proof is
complete. �
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3.3. Notation. Let us now fix the notation that will be in force throughout the
paper. Let

C[x,y] = C[x1, x2, x3, x4, y1, y2, y3]
We will also write C[x] instead of C[x1, x2, x3, x4].

If a, b, c ∈ C[x] are homogeneous polynomials of degree k ≥ 2, then f = ay1 +
by2 + cy3 is bihomogeneous of bidegree (k, 1) in C[x,y]. Let

d = a
∂

∂x1
+ b

∂

∂x2
+ c

∂

∂x3
.

Denote by A, B and C the derivatives of f with respect to x1, x2 and x3, and write

ξ = d−
(
A

∂

∂y1
+B

∂

∂x2
+ C

∂

∂x3

)
.

Note that if g ∈ C[x] then
ξ(g) = d(g).

The vector field ξ corresponds to the homogenization with respect to x4 of the
hamiltonian vector field defined by the function f |x4=1. Since ξ is homogeneous in
both the xs and ys, it induces a foliation in P3 × P2 which we also denote by ξ.

Now, if g ∈ C[x,y] is bihomogeneous, let g0 be the bihomogeneous polynomial
of C[x,y] obtained by setting x4 equal to zero in g. Then,

d0 = a0
∂

∂x1
+ b0

∂

∂x2
+ c0

∂

∂x3
,

induces a foliation in the plane (at infinity) H∞ defined by x4 = 0, which corre-
sponds to the restriction of d to this projective plane. Similarly,

ξ0 = d0 −
(
A0

∂

∂y1
+B0

∂

∂x2
+ C0

∂

∂x3

)
induces a foliation on the hyperplane H∞ × P2 of P3 × P2. As an immediate
consequence of the definition of singularity in terms of minors of matrices given in
§3.2 we have that

(3.2) π1(Sing(ξ0)) = Sing(d0),

where π1 : P3 × P2 → P3, is the projection on the first component of the product.
The next lemma contains three formulae that will be used throughout the paper
without any further comment. As in the previous section h =

∑3
i=1 xiyi.

Lemma 3.2. If p = ∂f/∂x4, then
(1) ξ(f) = 0;
(2) ξ(h) = (1− k)f + x4p;
(3) ξ0(h) = (1− k)f0.

Proof. (1) is obvious and (3) follows from (2); so we will prove only (2). By the
definition of ξ and h,

ξ(h) = f − (Ax1 +Bx2 + Cx3).

Since a, b and c are homogeneous of degree k with respect to the xs, we can apply
Euler’s relation to

Ax1 +Bx2 + Cx3 =
3∑
i=1

xi
∂f

∂xi
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which gives,

Ax1 +Bx2 + Cx3 = kf − x4
∂f

∂x4
= kf − x4p.

Hence,
ξ(h) = f − (kf − p) = (1− k) + x4p.

�

We finish the section with a characterization of some subvarieties of the hyper-
surface Z(f).

Proposition 3.3. Every subvariety of codimension two of P3 × P2, contained in
the hypersurface Z(f), is a schematic complete intersection.

Proof. Suppose that X is a subvariety of codimension two contained in the hyper-
surface Z(f). Then, f belongs to the ideal I(X). Since X has codimension two in
P3 × P2, it follows that the image of I(X) in the factor ring S/(f) has codimension
one. But this ring is factorial by Theorem 2.5. Therefore, I(X) is a principal ideal,
and the proof is complete. �

4. Foliations of Pn

In this section we prove that when n ≥ 2 a generic foliation of Pn which leavesH∞
invariant cannot have an invariant proper algebraic subvariety of positive dimension.
Curves are handled separately because they require the methods of [7] and [14],
while subvarieties of higher dimension can be dealt with by intersecting them with
H∞. A similar result in dimension two has been proved in [3, Theorem 5, p. 242]
and [15, Theorem 3, p. 385].

Lemma 4.1. Let χ ∈ Q[t] and k ≥ 2 an integer. Given a point p ∈ Pn, there exists
a section of ΘPn(k) which induces a foliation of Pn, singular at p, none of whose
invariant curves with Hilbert polynomial χ contain p.

Proof. The proof is essentially the same as that of [7, Proposition 4.1, p. 126].
Actually the only part of the proof that does not go through verbatim is the choice
of foliation. That happens for two reasons. The first is that we are dealing here
only with foliations that leave the hyperplane at infinity H∞ = Z(xn+1) invariant;
the second is that the condition on the first cohomology group in the statement [7,
Proposition 4.1, p. 126] need not hold for lower powers of the line bundle O(1). We
will overcome these problems by a direct computation, whose first step is a simple
interpolation.

We begin by showing that, given points p1, p2 ∈ An, vectors u1, u2 ∈ Cn, complex
numbers c1 and c2, and an integer k ≥ 2 there exists a nonzero homogeneous
polynomial g ∈ C[x1, . . . , xn+1] such that

g(pi) = ci and ∇g(pi) = ui, for 1 ≤ i ≤ 2.

In order to do this, choose g to be a polynomial of degree k in C[x1, . . . , xn+1] with
undetermined coefficients. The above equations give rise to 4 linear equations in
the coefficients of g. Since a complete polynomial of degree k in n + 1 variables
has more than four coefficients when k ≥ 2, coefficients, the resulting linear system
always has a nonzero solution. So the required g always exists.
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Let us now apply this to derivations. Let p1 and p2 be points in the hyperplane
H∞ = Z(xn+1) and M1, M2 be complex n × n matrices that stabilize this hyper-
plane. Note that this last condition implies that the last row of Mi is (0, . . . , 0,mi)
for some complex number mi. We may also assume, without loss of generality,
that both p1 and p2 belong to the open set of Pn defined by x1 6= 0. It fol-
lows from the preceding construction that there exists a homogeneous polynomial
a1 ∈ C[x1, . . . , xn+1] such that

a1(pi) = mi and ∇a1(pi) = 0, for 1 ≤ i ≤ 2.

Using the interpolation result again, we can now construct homogeneous polyno-
mials a2, . . . , an ∈ C[x1, . . . , xn+1] such that

(a2(pi), . . . , an(pi)) = pimi and Ji = Mi +miI, for 1 ≤ i ≤ 2,

where Ji denotes the jacobian of (a2, . . . , an) relative to the variables x2, . . . , xn,
computed at the point pi and I is the n × n identity matrix. A straightforward
calculation shows that the foliation F of Pn induced by

n∑
i=1

ai
∂

∂xi

satisfies the following properties:
• H∞ is invariant under F;
• F is singular at pi;
• the 1-jet of F at pi is Mi;

for 1 ≤ i ≤ 2. This is enough to prove that a foliation F with the properties required
in the proof of [7, Proposition 4.1, p. 126] exists subject to two further conditions:
H∞ is invariant under F and p1, p2 ∈ H∞. As already pointed out, the remainder
of the proof goes through with essentially no change. �

Theorem 4.2. A generic algebraic foliation of Pn of degree k ≥ 2 that leaves H∞
invariant does not have any algebraic invariant curves.

Proof. Let C[x] = C[x1, . . . , xn+1] and denote by C[x]k its homogeneous component
of degree k. Assume that n > 1 and k ≥ 2 are integers that will remain fixed
throughout the proof. If ai ∈ C[x]k for 1 ≤ i ≤ n, then we identify the vector field

(4.1) d =
n∑
j=1

ai∂/∂xi

with the n-tuple (a1, . . . , an) ∈ (C[x]k)n. Every foliation of degree k over Pn which
leaves the hyperplane H∞ of equation xn+1 = 0 invariant can be defined by such a
vector field. Indeed, we will use d to denote both the vector field and the foliation
that it determines in Pn. Hence, these foliations are parameterized by the projective
space Σ = P((C[x]k)n). Note, however, that we are allowing for gcd(a1, . . . , an) 6= 1,
which gives rise to a non-saturated foliation. To simplify the notation, [d] will stand
for the point [a1 : · · · : an] ∈ Σ that corresponds to the vector field d as in (4.1).

By [7, Lemma 5.2, p. 129] every subvariety invariant under a foliation of Pn must
contain a singularity of this foliation. Therefore the foliation of Pn corresponding
to a [d] ∈ Σ must have a singularity at H∞. Let

X = {[d]× p | d ∈ Σ and p ∈ Sing(d) ∩H∞}.
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Let q2 be the projection of X on Pn and note that the fibres q−1
2 (p) are linear

algebraic sets for every p ∈ Pn. Therefore the fibres of q2 are irreducible. Moreover,
they have the same dimension because PGL(n) acts transitively on Pn and its action
is compatible with q2. Hence, X is irreducible.

For χ ∈ Q[t] define Sχ, a subset of Σ× Pn, by

Sχ = {[d]× p : p is in a subscheme, invariant under d, of Hilbert polynomial χ}.
Then, by [7, Proposition 2.1, p. 120], we have that Sχ is a closed subset of Σ× Pn.

Assume now, by contradiction, that every [d] ∈ Σ has an invariant curve with
Hilbert polynomial χ. Since the intersection of any such a curve with H∞ must
contain a singularity of d, it follows that

q1(Sχ ∩ X) = Σ

where q1 denotes the restriction to X of the projection of Σ × Pn on its first com-
ponent. However, X is irreducible and its dimension is equal to that of Σ, because
q1 is generically finite. Thus,

Sχ ∩ X = X,

which implies that each curve invariant under d must go through every point of
Sing(d) ∩H∞. But this contradicts Lema 4.1 and completes the proof. �

We may now proceed to the main theorem of this section.

Theorem 4.3. A generic algebraic foliation of Pn of degree k ≥ 2 that leaves H∞
invariant cannot have any other proper algebraic invariant subvarieties of positive
dimension.

Proof. Suppose that d is such a generic foliation, and let Y be a proper invariant
subvariety of d. It follows from Theorem 4.2 that dim(Y ) > 1. Thus,

dim(Y ∩H∞) ≥ dim(Y )− 1 > 0

by [11, Theorem 7.2, p. 48]. Hence, d|H∞ has an invariant subvariety of positive
dimension contained in H∞. However, H∞ ∼= Pn−1. Moreover, since d is generic
in Pn, subject to the condition that it leaves H∞ invariant, its restriction to H∞
gives rise to a generic foliation of Pn−1. But such a foliation cannot have any
invariant proper algebraic subvarieties of positive dimension by [7, Theorem 1.1, p.
118] or [14, Theorem 2, p. 533]. Thus we have a contradiction, and the proof is
complete. �

5. The key lemmas

5.1. Hypotheses. We begin the section by stating the hypotheses under which we
are to work in the remainer of the paper. The notation of §3.3 remains in force.
Recall that given a polynomial g in

C[x,y] = C[x1, x2, x3, x4, y1, y2, y3] or C[x] = C[x1, x2, x3, x4],

we write g0 = g|x4=0. Let a, b and c be homogeneous polynomials of degree k ≥ 2
in C[x]. We will assume that:

H.1: a0, b0 and c0 are nonzero;
H.2: a0 is irreducible and the ideal (a0, b0) is a radical ideal of C[x1, x2, x3]

whose minimal primes do not contain c0;
H.3: (a, b) is a prime ideal;
H.4: d0 has no invariant curves in X = P2;
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H.5: d0 does not have singularities in Z(x3y1);
Note that (H.1) and (H.2) imply that a is an irreducible homogeneous polynomial
and that the ideal (a, b) of C[x] does not contain c. In particular, this implies that
Sing(d) has dimension zero in P3.

5.2. The plane at infinity. Our first lemma is concerned with the behaviour of
the foliation ξ at infinity.

Lemma 5.1. Let g0 be a bihomogeneous nonconstant polynomial contained in the
ring C[x1, x2, x3, y1, y2, y3] such that g0 /∈ (f0).

(1) If ξ0(g0) ∈ (h, f0, g0) then g0 ∈ (h, f0).
(2) If ξ0(g0) ∈ (f0, g0) then g0 ≡ hm (mod f0). In particular, g0 has bidegree

(m,m), for some integer m > 0.

Proof. Let A = C[x1, x2, x3, y1, y2, y3]. Hypothesis (1), together with Lemma 3.2,
imply that the ideal I = (g0, h, f0) is invariant under ξ0. But, by Propositions 2.3
and 2.4 and Theorem 2.5, (f0, h) is a prime ideal of height 2 contained in I. Hence,
either (f0, h) ( I or I = (f0, h).

Taking into account that f0 and (f0, h) are prime ideals we have, that, if (f0, h) (
I, then

dim(Z(I)) < dim(Z(f0, h)) = 2.
Therefore, Z(I) has dimension one or zero. In particular, if

π1 : P2 × P2 → P2

is the projection on the first component, then

dim(π1(Z(I))) ≤ 1.

However, π1(Z(I)) is invariant under d0, so it must have dimension zero by H.4.
Let

π1(Z(I)) = {p1, . . . , pt}.
If pi = [α1 : α2 : α3] and σ is an element of the symmetric group S3, let giσ =
ασ(1)xσ(2) − ασ(2)xσ(1). Hence, the ideal of π1(Z(I)) in C[x1, x2, x3] is equal to
m1 · · ·mt, where mi = (giσ : σ ∈ S3) is a homogeneous maximal ideal of C[x1, x2, x3]
(properly contained in the irrelevant ideal) for 1 ≤ i ≤ t. Thus, if

µ = g1
σ1
· · · gtσt

∈ m1 · · ·mt,

for some choice of σ1, . . . , σt ∈ S3, then there exists a positive integer s > 0 such
that

(5.1) (yjµ)s ∈ I for each 1 ≤ j ≤ 3.

Moreover, since there are finitely many µs, we can choose one m that will work for
all of them.

Now let β = x3b0−x2c0 and denote by B the localization of the domain A/(f0, h),
at the powers of βx3. Since,

x3f0 − c0h = (x3a0 − c0x1)y1 + βy2,

it follows that

βy2 = x3f0 − c0h− (x3a0 − c0x1)y1 and that x3y3 = h− (x1y1 − x2y2).

Hence,

(5.2) B ∼= (C[x1, x2, x3]βx3)[y1]
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which is a factorial ring by [16, Théoréme 4, p. 29]. Moreover, each mi has two
distinct linear generators, so we can choose

µ, µ′ ∈ m1 · · ·mt,

with gcd(µ, µ′) = 1 in B. But, by (5.1),

ym1 µ
m, ym1 µ

m ∈ BI,
where BI is the extension of I to B. Denoting by g0 the image of g0 in A/(f0, h),
we conclude that BI = Bg0 because f0 = h = 0. Thus, g0 divides both y1mµm and
y1
mµ′

m
, so it must divide their greatest common divisor, which is y1m. However,

y1 is a prime in B, which implies that

(5.3) g0 = uy1
k, for some unit u in B.

Note that it follows from (5.2) that the units of B are products of powers of x3 and
β with integral exponents.

Now we analyse the various possible identities over A/(f0, h) that result from
(5.3), taking also into account the explicit description of units of B given above.
Throughout this discussion k, ` and m denote non-negative integers and a denotes
the class of a ∈ A in the ring A/(f0, h). One of the four possible identities, namely

β
m
x3
`g0 = y1

k

can be eliminated straightaway because A is a bigraded ring and the degree in the
xs do not match on the two sides of the equation. Thus, by the bihomogeneity of
g0, it follows that g0 = yk1 , which will be analysed later on as part of the last case.
The next identity we consider is

(5.4) β
m
g0 = x3

`y1
k.

Let X be an irreducible component of Z(f0, h, g0) and P be its associated prime
ideal. By (5.4), P contains either x3 or y1. Therefore,

X ⊂ Z(x3) ∪ Z(y1).

However, X must contain a singularity of ξ0 by Proposition 3.1, so we have a
contradiction with hypothesis H.5.

The third possibility is
x3
`g0 = β

m
y1
k;

which implies that x2c̃0y1 ∈
√

(f0, h, x3), where c̃0 = c0(x1, x2, 0). Thus,

R = A/(f0, h, x3)

will vanish when localized at x2c̃0y1. However,(
x3, y2 +

x1

x2
y1, y3 +

(
b̃0x1

c̃0x1
− ã0

c̃0

)
y1

)
= (f0, h, x3)x2c̃0y1 in Ax3c̃0y1 ,

so that
Rx2c̃0y1

∼= (C[x1, x2]x2c̃0 [y1])y1 6= 0,
which is a contradiction. Finally, we have

g0 = β
m
x3
`y1

k.

If k = 0 then g0 ∈ C[x1, x2, x3], which implies that

(f0, h, g0) ∩ C[x1, x2, x3] = (g0),
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is invariant under d0, contradicting H.4. Hence, k > 0 and

(5.5) (f0, h, g0) ⊆ (f0, h, y1).

However, by (5.1), there exists an integer s > 0 such that

(µy3)s ∈ (f0, h, g0) for every µ ∈ m1 · · ·mt

Combined with (5.5) this implies that

(5.6) (µy3)s = φ1f0 + φ2h+ φ3y1,

for homogeneous polynomials φ1, φ2, φ3 ∈ A. Taking y1 = y2 = 0 into (5.6) we end
up with

(µy3)s = (φ̃1c0 + φ̃2x3)y3 where φ̃j = (φj)|y1=y2=0.

Therefore,
µs ∈ (c0, x3) for every µ ∈ m1 · · ·mt,

which implies that
m1 · · ·mt ⊆

√
(c0, x3).

Hence,
∅ 6= Z(c0, x3) ⊆ Z(m1 · · ·mt) ⊆ Sing(d0).

But this means that there are singularities of d0 contained in Z(x3). Taken to-
gether with (3.2), this contradicts H.5. Therefore, (f0, h) ( I cannot occur and we
conclude that I = (f0, h). In particular, g0 ∈ (f0, h) which proves (1).

Assume now that ξ0(g0) ∈ (f0, g0). By (1) we conclude that g0 ≡ qhm (mod f0)
for some polynomial q and some integer m > 0. Moreover, as A/(f0) is a factorial
domain by Theorem 2.5, we can assume that q is coprime with h modulo f0. If q
is constant, the result is proved; so we assume that q is nonconstant and aim at a
contradiction. By Lemma 3.2,

ξ0(g0) ≡ ξ0(q)hm + qmhm−1ξ0(h) ≡ ξ0(q)hm (mod f0).

Taking into account that g0 is invariant under ξ0 module f0, we conclude that

ξ0(q) ≡ rq (mod f0),

for some r ∈ A. But this implies that ξ0(q) ∈ (h, f0, q), so q ∈ (h, f0) by part (1),
which contradicts the choice of q and completes the proof. �

5.3. Ideals of codimension two. From now on g will denote a bihomogeneous
nonconstant polynomial of C[x,y] that is not contained in (x4). Moreover, we will
assume that (f, g) is a prime ideal of codimension 2 and invariant under ξ.

Lemma 5.2. If (f, g) is invariant under ξ, then

p0 ∈ (h) + CA0 + CB0 + CC0.

Proof. By Lemma 5.1, g can be written in the form

g = hm + x4q,

for some q ∈ C[x,y] and some integer m > 0. Note that q has bidegree (m− 1,m).
Now, it follows from Lemma 3.2 that

ξ(g) = m(1− k)hm−1f + x4(ξ(q) +mhm−1p).

However, since (f, g) is invariant under ξ,

ξ(g) ≡ rg (mod f),
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for some r ∈ C[x]. Hence,

(5.7) x4(ξ(q) +mhm−1p) ≡ rg (mod f).

By Theorem 2.5, the ring C[x,y]/(f) is a factorial domain over which x4 is ir-
reducible. Since x4 does not divide h, it cannot divide g modulo f . Therefore,
x4 divides r modulo f ; say r ≡ x4r̂ (mod f), for some r̂ ∈ C[x] of degree k − 2.
Canceling x4 is (5.7) we obtain

ξ(q) +mhm−1p ≡ r̂g (mod f).

Thus, using the convention of §3.3 that a zero subscript indicates restriction to the
hyperplane H∞ with equation x4 = 0, we have

(5.8) ξ0(q0) ≡ hm−1(r̂0h−mp0) (mod (f, x4));

which implies that the ideal (q0, h, f0) of C[x,y] is invariant under ξ0. Thus, q0 ∈
(h, f0) by Lemma 5.1, so that

(5.9) q0 ≡ hsq̂0 (mod f0),

for some integer s > 0 and some polynomial q0 ∈ A = C[x1, x2, x3, y1, y2, y3].
Moreover, since the ring A/(f0) is a factorial domain by Theorem 2.5, we can
assume that h and q̂0 have no common factor module f0. However, from (5.8) and
(5.9) it follows that

hsξ0(q̂0) ≡ hm−1(r̂0h−mp0) (mod f0).

If q̂0 is a constant then r̂0h − mp0 must be divisible by f0. However, r̂0h − mp0

has degree k − 1 with respect to the xs, while f0 has degree k relative to the same
variables. This implies that r̂0h = mp0, from which we conclude that p0 ∈ (h),
because m ≥ 1. So we may assume that q0 is not a constant.

Thus, either s > m− 1 or s ≤ m− 1. In the first case, h divides p0 and we are
done; in the second case we get that

(5.10) ξ0(q̂0) ≡ hm−s−1(r̂0h−mp0) (mod f0).

If s < m − 1, then the ideal (h, f0, q̂0) is invariant under ξ0. But, by Lemma 5.1
this implies that h divides q̂0, contradicting the choice of q̂0. Therefore, s = m− 1
and

(5.11) ξ0(q̂0) ≡ r̂0h−mp0 (mod f0).

Since q0 has bidegree (m− 1,m) and

q0 ≡ hm−1q̂0 (mod f0),

by (5.9), it follows that q̂0 has bidegree (0, 1). Hence, there exist complex numbers
e1, e2 and e3 such that

q̂0 = e1y1 + e2y2 + e3y3,

so
ξ0(q̂0) ≡ e1A0 + e2B0 + e3C0 (mod f0).

Comparing with (5.11) we find that

mp0 ≡ r̂0h− (e1A0 + e2B0 + e3C0) (mod f0).

However, f0 has degree k ≥ 2 with respect to the xs, so the congruence can only
hold if

mp0 = r̂0h− (e1A0 + e2B0 + e3C0),
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and the proof is complete. �

6. The main results

The notation of §3.3 and the hypotheses of §5.1 will remain in force throughout
this section.

6.1. Invariant algebraic varieties. Let

π1 : P3 × P2 → P3

be the projection on the first component. We begin with a theorem that charac-
terizes the algebraic varieties invariant under the foliation ξ of P3 × P2.

Theorem 6.1. Let X ( H∞ × P2 be a proper algebraic subvariety of positive
dimension of the hypersurface Z(f) ⊂ P3 × P2 invariant under ξ, and suppose that
the hypotheses of §5.1 are satisfied. If

(1) p0 /∈ (h) + CA0 + CB0 + CC0;
then dim(X) < 3. If, moreover,

(2) all the algebraic curves and surfaces of P3 invariant under d are contained
in H∞;

then X is contained in a finite union of fibres of π1.

Proof. Let X be an algebraic subvariety of Z(f) invariant under ξ. If dim(X) = 3
then, by Proposition 3.3, the ideal I(X) is generated by f and by a bihomogeneous
polynomial g. But by Lemma 5.2 this implies that

p0 ∈ (h) + CA0 + CB0 + CC0,

which contradicts (1). Therefore, dim(X) < 3. Hence,

dim(π1(X)) ≤ dim(X) ≤ 2.

Since d has no invariant curves or surfaces, it follows that π1(X) is a set of isolated
points, and the theorem follows. �

Corollary 6.2. Let k ≥ 3 and let f be a bihomogeneous generic polynomial of bide-
gree (k, 1) in C[x1, x2, x3, x4, y1, y2, y3]. If X is an irreducible algebraic subvariety
of codimension one or two in the hypersurface Z(f) of P3 × P2 that is invariant
under ξ, then X is contained in either, H∞ × P2 or a fibre of π1.

Proof. We begin by showing that the hypotheses of Theorem 6.1 hold generically.
Hypotheses H.1 and H.5 are clearly satisfied by a generic choice of a, b and c, because
the homogeneous components of C[x1, x2, x3] of degree k ≥ 2 have dimension greater
than 3. The first part of H.2 is also clear. For the second part, let m be a maximal
ideal corresponding to p ∈ Z(a0, b0). Then, c0 ∈ m if and only if c0(p) = 0, which
is itself equivalent to

Z(a0, b0) ∩ Z(c0) 6= ∅,
which does not hold for a generic choice of a0, b0 and c0. Thus, a minimal prime
m over (a0, b0) do not contain c0. In order to prove H.3, we use the the Noether-
Lefschetz Theorem, according to which the Picard group of the surface S ⊂ P3,
with equation a = 0, is generated by the hyperplane bundle when k ≥ 3 and a is
chosen generically; see [8, Th’éoréme 1.2]. Since S is a complete intersection, it is
also projectively normal. Therefore, its homogeneous coordinate ring C[x]/a is a
factorial ring, [11, Exercise 6.3(c), p. 147]. Thus, any generically chosen element b
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of degree k in C[x]/a will be prime. In particular, (a, b) is a prime ideal. This proves
that H.3 holds generically. The genericity of H.4 is a famous result of Jouanolou; see
[13, Théoréme 1.1, p. 158]. Let us now turn to hypotheses (1) and (2) of Theorem
6.1.

In order to simplify the notation, let S(r, t) be the C-vector subspace of biho-
mogeneous polynomials of bidegree (r, t) in C[x1, x2, x3, y1, y2, y3]. Since p0 can be
chosen independently of A0, B0 and C0, it is enough to show that the vector space
quotient

S(k − 1, 1)
S(k − 2, 0)h+ CA0 + CB0 + CC0

is nonzero. However, this space has dimension greater than or equal to

3
(
k + 2

2

)
−
(
k + 1

2

)
− 3 =

2k2 + 8k
2

> 0,

for all k ≥ 2, so it must be nonzero, and we have (1). Finally, (2) is a consequence
of Theorem 4.3. �

7. A conjecture of Bernstein and Lunts

The conjecture of Bernstein and Lunts for dimension three is a consequence of
Theorem 6.1. We begin by reviewing the background of the conjecture.

7.1. Involutive varieties. Let ∂i denote the partial differential operator ∂/∂xi.
For each multi-index α = (α1, . . . , αn) ∈ Nn we write

∂α = ∂α1
1 · · · ∂αn

n , and |α| = α1 + · · ·+ αn.

Using this notation, a polynomial differential operator over Cn can be written in
the form

P =
∑
α∈A

aα∂
α,

where aα ∈ C[x1, . . . , xn] and aα = 0 for all multi-indices outside a finite set A.
The order of P is s if |α| ≤ s for all α ∈ A and |α| = s for at least one α for which
aα 6= 0. The set of differential operators over Cn with the standard addition and
multiplication (composition of operators) is a noncommutative ring, called the nth
Weyl algebra and denoted by An.

The order of an operator determines a filtration {Fi}i≥0 in An, from which we
can construct a graded ring. If Fi is the complex vector space of all operators of An
of order less than or equal to i, then Fi/Fi−1 is isomorphic to the free C[x1, . . . , xn]-
module Si generated by the monomials yα with |α| = i. Thus, one has a C-linear
map

σi : Fi/Fi−1 → Si,

called the symbol map of order i. We will write yi for the symbol σ1(∂i). If P ∈ An
has order i then its principal symbol is

σ(P ) = σi(P ) =
∑
α∈A
|α|=i

aαy
α ∈ Si.

This grading induces an isomorphism of graded C[x1, . . . , xn]-algebras between the
polynomial ring C[x1, . . . , xn, y1, . . . , yn] and

⊕
i≥0 Si which, in turn is naturally

isomorphic to the coordinate ring of the cotangent bundle T ∗Cn. We will use S to
denote any of these three isomorphic rings.
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Given a left ideal J of An, its symbol ideal is the ideal of S generated by σ(P )
for every P ∈ J . The construction of σ(J) implies that the variety Z(σ(J)) defined
in T ∗Cn by the vanishing of the elements of σ(J) is subject to certain important
constraints. First of all, Z(σ(J)) is conical ; that is, homogeneous with respect to
the fibres of the cotangent bundle. Second, if Z(σ(J)) does not contain the zero
section of the cotangent bundle then J must have an operator of order zero (a
polynomial of C[x1, . . . , xn]). The third, and most important, of the properties of
Z(σ(J)) is related to the fact that the cotangent bundle of a manifold always admits
a symplectic structure; see [2, p. 202].

In the case of T ∗Cn the symplectic structure is defined by the 2-form
n∑
i=1

dxi ∧ dyi,

which, in turn, determines a Poisson bracket in S given by the formula

{f, g} =
n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂g

∂xi

∂f

∂yi

)
,

where f, g ∈ S = C[x1, . . . , xn, y1, . . . , yn]. An ideal I of S is closed under the
Poisson bracket if {I, I} ⊂ I. A conical variety whose ideal is closed under the
Poisson bracket is called involutive. Such a variety must have dimension at least n;
see [6, Proposition 2.2, p. 102] for a proof. The third property of Z(σ(J)) can now
be stated.

Theorem 7.1. Let J be a left ideal of An. The radical of σ(J) is closed under the
Poisson bracket of S. In other words, Z(σ(J)) is an involutive conical variety.

This result, often referred to as the involutivity (or integrability) of the charac-
teristic variety is far subtler than it seems at first. See [6, Chapter 11] for more
details and [10] for a purely algebraic proof of the theorem.

We will apply these constructions to the special case in which the left ideal
J is generated by a first-order differential operator P ∈ An. In this case, σ(J) =
(σ(P )), so Z(σ(J)) = Z(σ(P )) is a hypersurface of T ∗Cn. Moreover, Z(σ(P )) always
contains the zero section of T ∗Cn as well as all the fibres that are supported over
singularities of P . Bernstein and Lunts [3, §4.2, p. 236] defined an involutive conical
variety of T ∗Cn to be almost minimal if its only conical involutive subvarieties are
the zero section of T ∗Cn and a finite number of fibres. They used this concept in
order to prove the following result; see [3, Proposition 6, p. 237].

Proposition 7.2. Let P be a derivation of An. If Z(σ(P )) is almost minimal then
there exists a polynomial f such that the left ideal An(P + f) is maximal.

7.2. The conjecture. Of course for Proposition 7.2 to be meaningful one must
first prove that there exist first-order polynomial operators whose characteristic
varieties are almost minimal involutive. In [3, Conjecture 1, p. 236], Bernstein and
Lunts proposed the following conjecture.

Conjecture 7.3. If P is a generic derivation of C[x1, . . . , xn] whose coefficients
have degree k ≥ 2 then Z(σ(P )) is an almost minimal conical involutive variety.

In [3, §4.3, p. 236], they proved that the conjecture holds for n = 2. In this
case, the proof is quite simple, because if Z(σ(P )) were not almost minimal then
it would contain a conormal subvariety supported on a curve, which would have to
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be invariant under P . But a generic derivation does not have any invariant curves
by Theorem 4.3. We use the results of this paper to give a proof of the conjecture
when n = 3.

Theorem 7.4 (Conjecture of Bernstein and Lunts in dimension 3). If P is a generic
derivation whose coefficients are polynomials of degree k ≥ 3 in C[x1, x2, x3] then
the hypersurface σ(P ) = 0 is almost minimal involutive in T ∗C3.

Proof. Given an irreducible conical algebraic subvariety X of T ∗C3 ∼= C3×C3, that
is not contained in the zero section, we can construct an algebraic subvariety X of
P3 × P2, via the standard embedding C3 ⊂ P3. The homogenizing variable will be
denoted by x4. Applying this construction to the hypersurface σ(P ) = 0 we obtain
the hypersurface Z(f), where f is the homogenization of σ(P ) with respect to x4.

If X is a subvariety of the hypersurface σ(P ) = 0 that is not contained in the zero
section, then X is a subvariety Z(f) that is not contained in H∞×P2. Moreover, if
X is involutive, then it is invariant under the hamiltonian vector field induced by
f . But this is equivalent to saying that X is invariant under ξ, in the notation of
§3.3. Thus, by Corollary 6.2, X must be contained in a fibre of the projection

π : P3 × P2 → P3,

which implies that X is contained in a fibre of the cotangente bundle. Hence,
σ(P ) = 0 is almost minimal involutive. �
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