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Abstract

We use certain derivations of a polynomial ring, that do not leave any proper non-
zero ideal invariant, to construct simple non-holonomic modules over the nth Weyl
algebra. This approach extends to the rings of differential operators of other smooth
affine varieties, like smooth quadric surfaces.

1. Introduction

It was believed for some time that all simple (irreducible) modules over a Weyl
algebra An were holonomic; that is, modules of Gelfand–Kirillov dimension n. In
1985, Stafford in [Sta] constructed examples of non-holonomic simple An-modules.
His approach was to write down an element d ∈ An, for n > 2, and show that
An/And is simple by a direct calculation.

A second approach was introduced by Bernstein and Lunts in 1988, (see [BeL]).
Their starting point was a generic object: either an operator with generic symbol, if
one works under the Bernstein filtration, or a generic derivation, if one works under
the order filtration. This gives rise to a method that yields many interesting families
of non-holonomic simple An-modules. However, Stafford’s original example is not a
member of any of these families. The aim of this paper is to construct a new family
of simple non-holonomic modules which contains this example.

Let d be a derivation of a commutative domain R. An ideal I of R is a d-ideal if
d(I) ⊆ I. We will say that R is d-simple if it does not contain any proper non-zero
d-ideals. Commutative d-simple rings have been used in the construction of examples
of simple non-commutative rings; see [GoW, proposition 1·14].

It is well known that there exist derivations d with respect to which the ring of
polynomials in n variables over a field of characteristic zero is d-simple. In Section 3
we show that for some of these derivations a polynomial f can be found such that
An/An(d + f ) is a simple An-module. Stafford’s example can be put into this form.
This approach has the advantage that it can be easily generalised to the ring of
differential operators of other smooth affine varieties.

The paper is planned as follows. In Section 2 we review some basic facts about
D-modules. In this section we also prove the theorems that will allow us to reduce
the construction of simple non-holonomic modules over a ring of differential oper-
ators of certain smooth varieties to the same problem over the Weyl algebra. The
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latter is dealt with in Section 3. These results are applied to smooth quadric surfaces
in Section 4.

2. Basic results

Let us review some basic facts about rings of differential operators and their
modules. Let X be an irreducible, smooth, affine variety of dimension n over a field
K of characteristic zero. Let R be a localization of the ring of coordinates O(X) on a
multiplicative system. The ring of differential operators D(R) is the K-subalgebra of
EndK R generated by R and the derivations in DerK R. This is a simple noetherian
domain see [McR, chapter 15]. As usual, we will write D(X) instead of D(O(X)).

The ring D(R) admits a filtration, defined by C0 = R, C1 = R + DerK R and
Ck = Ck

1 if k > 0. The order of a non-zero operator D ∈ D(R) is the smallest k such
that D ∈ Ck. It follows from [McR, proposition 15·4·5] that the graded ring asso-
ciated with this filtration is isomorphic to the symmetric algebra on DerK R. We will
denote this algebra by S(R); or S(X) if R = O(X). Let Sk(R) be the
k-th homogenous component of the symmetric algebra. The symbol map of order k,
denoted by σk, is defined by the composition

σk: Ck → Ck/Ck−1
∼→Sk(R).

If d ∈ Ck \ Ck−1 then its principal symbol is σ(d) = σk(d).
The algebra S(R) has an additional structure of Lie algebra. Let f1 and f2 be

homogeneous elements of S(R) of degrees r1 and r2. There exist a1, a2 ∈ D(R) of
orders r1 and r2 respectively, such that σri(ai) = fi. The Poisson bracket of f1 and f2

is defined by

{f1, f2} = σr1+r2−1([a1, a2])

where [a1, a2] denotes the commutator in D(R). This is easily extended, by linearity,
to all of S(R). An ideal of S(R) is involutive if it is closed under the Poisson bracket.

Given a finitely generated left D(R)-moduleM , we can endow it with a filtration as
follows. Let u1, . . . , ur be generators ofM . The filtration is defined by Γj =

∑r
i=1 Cjui

for j > 0. This is a good filtration in the sense that the associated graded module
grΓM is finitely generated over S(R). The radical of the annihilator of grΓM in
S(R) is independent of the good filtration of M used in calculating it, see [McR,
proposition 8·6·17]. It is called the characteristic ideal of M and denoted by I(M ).
The most important property of I(M ) is its involutivity with respect to the Poisson
bracket. This is proved in [Gab].

A simple, but useful, example occurs when M is cyclic. In this case M%D(R)/J ,
where J is a left ideal of D(R) and I(M ) is the radical of the symbol ideal of J , which
is σ(J) =

∑
k>0 σk(J w Ck).

For the remainder of the section we shall assume that K is algebraically closed.
The dimension of a finitely generated left D(R)-module M is defined as the Krull
dimension of S(R)/I(M ). We will denote the dimension of M by dD(R)(M ); or simply
d(M ). A good filtration of M induces a good filtration in a submodule N of M , see
[Cou, lemma 7·5·1]. Moreover, the dimension defined above is exact:

d(M ) = max {d(N ),d(M/N )};
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see [MeN, section 1·1]. Note that if a ∈ D(X) has order > 1 then it follows imme-
diately from the definition that the module D(X)/D(X)a has dimension 2n − 1. If
n > 2 then 2n− 1 > n and this module is not holonomic.

We shall now turn to the problem of constructing simple D(X)-modules. The key
ingredient will be the fact that O(X) is d-simple with respect to a derivation d.

Theorem 2·1. Let X be an irreducible, smooth, affine variety over K. Suppose that
there exists a derivation d of O(X) with respect to which this ring is d-simple. Let
S ⊆ O(X)\{0} be a multiplicative set and putM = D(X)/D(X)(d+f ), where f ∈ O(X).
Thus:

(1) if N is a non-zero submodule of M then NS is a non-zero submodule of MS;
(2) if MS is a simple D(X)S-module then M is a simple D(X)-module.

Proof. Suppose that J is a left ideal of D(X) which contains D(X)(d+f ) properly.
To prove (1) it is enough to show that

D(X)S(d + f )óJS.

Assume, by contradiction, that these ideals are equal after the localization has been
performed. Let a be the non-zero element of smallest possible order in J\D(X)(d+f ).
The equality of the localizations implies that there exists s ∈ S such that sa ∈
D(X)(d + f ). Taking symbols, we have that sσ(a) belongs to the ideal of S(X) gen-
erated by σ(d). Since O(X) is d-simple and d has order 1, it follows that σ(d) is irre-
ducible. Therefore either s or σ(a) belongs to S(X)σ(d). But if σ(a) = σ(b)σ(d) for some
b ∈ D(X), then a−b(d+f ) ∈ J has smaller order than a. Thus a−b(d+f ) ∈ D(X)(d+f )
and so a ∈ D(X)(d + f ), a contradiction. Hence s ∈ S(X)σ(d), which is not possible
either, because S(X) is graded and s has order 0, whilst σ(d) has order 1. This proves
(1).

To prove (2) we must show that D(X)(d + f ) is a maximal left ideal. Let J be
as above; then D(X)/J is a homomorphic image of M . Since MS is simple and
localization is an exact functor, it follows from (1) that JS = D(X)S. Thus SwJ� �.
In particular, O(X)wJ is a non-zero ideal of O(X). But d+f ∈ J , so if a ∈ O(X)wJ ,
then

[d + f, a] = d(a) ∈ O(X) w J.

Thus O(X) w J is a non-zero d-ideal of O(X). Since O(X) is d-simple, we conclude
that 1 ∈ J . Hence D(X)(d + f ) is a maximal left ideal, as we wanted to prove.

We will say that X is a select variety if it is an irreducible affine variety whose
module of Kähler differentials Ω1(X) is free on dx1, . . . , dxn where x1, . . . , xn ∈ O(X).
The functions x1, . . . , xn will be called the coordinates of X. It is shown in [McR,
theorem 15·2·13] that every affine, irreducible, smooth variety admits a finite cover
by principal open sets which are select varieties. If X is a select variety then there
exist derivations ∂i such that ∂i(xj) = δij , for i = 1, . . . , n. The set {∂1, . . . , ∂n} is a
basis for the module of derivations of X. Put K[x] = K[x1, . . . , xn] and let K(x) be
its quotient ring. Since K[x] is a polynomial ring, the ring of differential operators
D(X) contains a copy of the nth Weyl algebra, generated by the xs and ∂s, which will
be denoted by An. Moreover, the quotient field K(X) of O(X) is a finite extension of
K(x). Note also that a derivation d of K[x] extends to a derivation of O(X), which
will also be denoted by d.
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Theorem 2·2. Let X be a select variety and let d be a derivation of K[x]. Suppose

that K[x] is d-simple, then:
(1) O(X) is d-simple;
(2) if for some f ∈ K[x] the module An/An(d + f ) is simple, then so is

D(X)/D(X)(d + f ).

Proof. Let S = K[x] \ {0}. It follows from the comments above that O(X)S =
K(X). For the purposes of this proof it is convenient to write L for K(X) and L0 for
K(x). Note that D(X)S = D(L) and S(X)S = S(L).

We begin by proving (1). Let J be a non-zero d-ideal of O(X). Since JS = K(X),
it follows that J wS�6. In particular, the d-ideal J wK[x] of K[x] is non-zero.
But K[x] is d-simple, so 1 ∈ J wK[x]. Hence 1 ∈ J . We have thus proved that O(X)
is d-simple.

Next we turn to (2). Suppose that J is a left ideal of D(X) such that (d + f ) ^ J .
We claim that it is enough to show that JS = D(L). Indeed, that means that there
exists a non-zero element g ∈ K[x] w J . But d + f ∈ J , so

[d + f, g] = d(g) ∈ J wK[x].

Since K[x] is d-simple, it follows that 1 ∈ J wK[x] ⊆ J , as required.
Let us now prove that JS = D(L). Localizing D(X)(d + f )ó J at S and using

Theorem 2·1(1), we have that

D(L)(d + f )óJS. (2·3)

To simplify the notation write J ′ = JS. Taking symbols on (2·3) we get that

S(L)σ(d)óσ(J ′).

But σ(d) is irreducible in S(L), thus the Krull dimension of S(L)/σ(J ′) satisfies the
inequality

dim (S(L)/σ(J ′)) < 2n− 1. (2·4)

Since L is a finite extension of L0 we conclude that S(L) is an integral extension
of S(L0). Thus so is the extension

S(L0)
S(L0) w σ(J ′)

↪→ S(L)
σ(J ′)

.

From this and (2·4) it follows that

dim
(

S(L0)
S(L0) w σ(J ′)

)
= dim

(
S(L)
σ(J ′)

)
< 2n− 1. (2·5)

On the other hand, D(L)/J ′ is a finitely generated module over D(L0), since L is
finite over L0. Moreover the filtration induced by the order of D(L) is a good filtration
of D(L)/J ′ as a D(L0)-module. The corresponding graded module is S(L)/σ(J ′). Thus

annS(L0)

(
S(L)
σ(J ′)

)
= σ(J ′) w S(L0).

In particular

dD(L0)(D(L)/J ′) = dim (S(L0)/σ(J ′) w S(L0)) < 2n− 1,
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by (2·5). Since the natural map

D(L0)
D(L0) w J ′

↪→ D(L)
J ′

is a homomorphism of finitely generated D(L0)-modules, we conclude that

dD(L0)(D(L0)/(D(L0) w J ′)) < 2n− 1.

Hence D(L0)(d + f ) ó D(L0) w J ′. But An/An(d + f ) is a simple An-module by
hypothesis. Thus its localization at S is a simple D(L0)-module; but this module is
D(L0)/D(L0)(d + f ). In other words, D(L0)(d + f ) is a maximal left ideal of D(L0).
Therefore 1 ∈ J ′, as we wanted to prove.

We are now ready to outline the strategy we will use to construct non-holonomic
simple D-modules. Suppose that X is a smooth, irreducible, affine complex variety.
The first step is to construct a derivation d of O(X) with respect to which this ring is
d-simple. This is not always possible. It is easy to see that if such a derivation exists
then Ω1(X) has a free direct summand. For example, if X is a surface in A2(K), the
d-simplicity of O(X) implies that Ω1(X) is free; see [Arc, theorem 2·5·18]. No easy
necessary and sufficient condition is known for checking that O(X) is d-simple for a
given X.

Let us assume that a derivation d has been found such that O(X) is d-simple. The
second step consists in finding f, g ∈ O(X) such that:

(1) the principal open set U of X defined by g� 0 is a select variety with coordi-
nates x1, . . . , xn;

(2) g−1f ∈ K[x1, . . . , xn] and An/Ang−1(d + f ) is a simple An-module, where An
is the Weyl algebra on x1, . . . , xn and their partial derivatives.

We deal with (2) in Section 3. It follows from (1), (2) and Theorem 2·2 that the module
D(U )/D(U )(d+ f ) is simple. Thus D(X)/D(X)(d+ f ) is simple by Theorem 2·1. This
strategy will be applied to a smooth quadric surface in Section 4.

3. Weyl algebras

Let K be a field of characteristic zero. The ring of differential operators of the
affine space An(K) is the Weyl algebra An = An(K). In this section we construct
derivations with respect to whichK[x] = K[x1, . . . , xn] is d-simple. These derivations
are then used in the construction of a family of non-holonomic simple An-modules.
Stafford’s example in [Sta, theorem 1·1] is a member of this family.

Let R be a commutative K-domain and consider the ring S = R[y1, . . . , yr].
We will assume that the monomials of S are ordered by the graded lex order. This
means that we order the monomials according to their degree; however, if two mono-
mials have the same degree, then the bigger monomial is the one that is higher in the
lexicographical order. The leading monomial of a polynomial of S is its monomial of
highest graded lex order. A polynomial in S is monic if the coefficient of its leading
monomial is 1. The support of a polynomial f of degree k in S is the set of multi-
indices α of length k such that yα has non-zero coefficient in f . We will assume that
S is endowed with a derivation d which satisfies:

(1) d(R) ⊆ R;
(2) R is d-simple;
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(3) there exist ai, bi ∈ R such that d(yi) = aiyi + bi for i = 1, . . . , n.

Define a map λ : N → R by λ(α) = −∑r
i=1 aiαi where α = (α1, . . . , αr). We wish

to show that such a derivation exists when R is a polynomial ring in one variable
over K, and that S is d-simple. Recall that the length of a multi-index α ∈ Nr is
|α| = α1 + . . . + αr. We begin with a technical lemma.

Lemma 3·1. If a d-ideal J of S contains a polynomial h of degree k then it contains
a monic polynomial of the same degree whose support is contained in the support of h.

Proof. If g ∈ R then the leading term of d(gyα) is (d(g)− λ(α)g)yα. Suppose that
the leading monomial of h is gyα, where α has length k. Write h0 = h and assume, by
induction, that a sequence h0, h1, h2, . . . , hk−1 of elements of J has been found such
that hj has leading term dj(g)yα and support contained in the support of h. Write
hk = d(hk−1) + λ(α)hk−1. Then hk has leading term dk(g)yα, unless dk(g) = 0. Since
R is d-simple, dk(g) = 0 can only happen if g is invertible. But in this case hk−1 is
monic, as required. Moreover hk ∈ J and its support is contained in the support of
h. Thus we can assume that J contains an infinite sequence h0, h1, . . . of elements
satisfying the above hypotheses. But since R is d-simple, there exist q1, . . . , qs ∈ R
such that

s∑
j=0

qjd
j(g) = 1.

Thus
∑s

j=0 qjhj ∈ J has yα as its leading monomial and its support is contained in
the support of h. This proves the lemma.

Proposition 3·2. Suppose that S = R[y1] and that d(q)� a1q + b1 for all q ∈ R.
Then S is d-simple.

Proof. Suppose that S is not d-simple and let J be a proper non-zero d-ideal of S.
We will aim at a contradiction. Let f be a non-zero element of S of smallest possible
degree k in y1. By Lemma 3·1 we can assume that f is monic. Then d(f )− ka1f ∈ J
has degree 6 k − 1 and so must be zero. Let c ∈ R be the coefficient of the term of
degree k − 1 of f . Equating the term of degree k − 1 of d(f )− ka1f to zero we get

d(c) + kb1 − a1c = 0, hence d(−c/k) = a1(−c/k) + b1,

a contradiction. Thus S is d-simple.

This proposition is due to Shamsuddin; see [Arc, theorem 2·3·16]. It is the key
to the construction of an important family of derivations of K[x] with respect to
which this ring is d-simple. Throughout this section the partial differential operator
∂/∂xi of K[x] will be denoted by ∂i.

Theorem 3·3. Let a2, . . . , an, b2, . . . , bn be non-zero polynomials in K[x1]. If
(1) ai/aj ^ Q whenever 2 6 i < j 6 n and
(2) deg (ai) > deg (bi) for i = 2, . . . , n;

then K[x1, . . . , xn] is d-simple with respect to the derivation

d = ∂1 +
∑
i>2

(xiai + bi)∂i.
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Proof. By Proposition 3·2 and induction it is enough to prove that if 1 6 k < n

then for each k < i 6 n and all f ∈ K[x1, . . . , xk] one has d(f ) � fai + bi. This
statement can be proved by induction on k. For k = 1 and 0� f ∈ K[x1], we have
that d(f ) = ∂f/∂x1 has degree < deg (f ). On the other hand, fai + bi has degree
equal to deg (f ) + deg (ai), since deg (ai) > deg (bi) for all i > 2. Thus fai + bi has
degree > deg (f ) and d(f )� fai + bi, for i > 2.

Suppose, by induction, that the result is true for the polynomial ring in k − 1
variables. Let f ∈ K[x1, . . . , xk] be such that d(f ) = fai + bi for some k < i 6 n. By
the induction hypothesis f ^ K[x1, . . . , xk−1]. Thus we can write f =

∑m
j=0 cjx

j
k with

cm� 0 and m > 1. A calculation shows that

d(f ) =
m∑
j=0

(d(cj) + jcjak + (j + 1)cj+1bk)x
j
k

where we are assuming that cj = 0 if j > m. Comparing the leading coefficients of
d(f ) and fai + bi as polynomials in xk we arrive at the equation

d(cm) = (ai −mak)cm. (3·4)

But d restricts to a derivation of K[x1, . . . , xk−1]. By Proposition 3·2 and the ind-
uction hypothesis K[x1, . . . , xk−1] is d-simple. Hence we conclude from (3·4) that
cm is invertible; in particular cm ∈ K. Since k < i, it follows by hypothesis that
ai−mak� 0 and so cm must be zero, a contradiction. Thus d(f )� fai + bi for k < i
and all f ∈ K[x1, . . . , xk], as required.

We will now use these derivations to construct simple An-modules. Let d be the
derivation of Theorem 3·3. The adjoint action of d onAn induces a derivation δ in the
graded ring K[x,Ξ] = K[x1, . . . , xn, ξ1, . . . , ξn] of An. If g ∈ K[x,Ξ] is homogeneous
of degree m in the ξs and σm(a) = g then

δ(g) = σm([d, a]) = {σ1(d), g}.
A straightforward calculation shows that:

(1) δ(g) = d(g) if g ∈ K[x];
(2) δ(ξi) = −aiξi,

for i = 2, . . . , n. A technical lemma is required before we tackle the main theorem;
the above notation remains in force.

Lemma 3·5. Assume that a2, . . . , an are linearly independent over Q. Let J be a δ-
ideal of K[x,Ξ] homogeneous with respect to Ξ. If 0� h ∈ J then J contains ξα for
some multi-index α in the support of h (as a polynomial in the ξs).

Proof. Among all the elements of J , choose one whose support is as small as pos-
sible and is contained in the support of h. Without loss of generality we can assume
that this element is h itself. Applying Lemma 3·1 with R = K[x] and yi = ξi we
conclude that J contains a monic element whose support is contained in the support
of h. Thus, without loss of generality, we can suppose that h is monic. Moreover,
since J is homogeneous, we can also suppose that h is homogeneous. Hence

h = ξα +
∑
β<α

gβξ
β.
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where β < α in the lexicographic order and gβ ∈ K[x]. But

δ(h)− λ(α)h =
∑
β<α

(d(gβ) + (λ(β)− λ(α))gβ)ξβ

has fewer non-zero summands than h. By the minimality of the support of h all the
coefficients of δ(h)− λ(α)h must be zero. Thus

d(gβ) = (λ(α)− λ(β))gβ.

SinceK[x] is d-simple, it follows that gβ ∈ K. But a2, . . . , an are linearly independent
over Q, so λ(α)�λ(β) and gβ = 0 for all β�α. Therefore h = ξα ∈ J and the lemma
is proved.

Recall that Ck stands for the K-vector space of operators of order at most k of
An. The operators ∂α with |α| 6 k form a basis of Ck.

Theorem 3·6. For 2 6 i 6 n, let ai, bi, hi be non-zero polynomials in K[x1] such
that:

(1) a2, . . . , an are linearly independent over Q and
(2) deg (ai) > max {deg(bi),deg (hi)} for i = 2, . . . , n.

If

d = ∂1 +
∑
i>2

(xiai + bi)∂i.

and h =
∑

i>2 hixi then An/An(d + h) is a simple non-holonomic An-module.

Proof. Suppose that An(d+h) is not a maximal left ideal of An. Hence there exists
a left ideal J that contains An(d+ h) properly. Let An−1 be the K-subalgebra of An
generated by xi and ∂i, for i 6 n − 1. Note that An is generated by x1, . . . , xn and
by the derivations d and ∂2, . . . , ∂n. Thus any element of An is congruent, modulo
An(d + h), to an element in An−1[x1], which we will call its residue. If D ∈ Ck then
its residue has order at most k. Moreover, if D belongs to J , then so does its residue,
since d + h ∈ J .

Let k be the smallest possible order of a non-zero element of J w An−1[x1]. We
can assume that k > 1; otherwise J = An. By Lemma 3·5, the ideal J contains an
element of the form ∂α + P , where α ∈ Nn has length k and first coordinate zero,
and P ∈ Ck−1. But the residue of P also belongs to Ck−1. Thus replacing P by its
residue if necessary, we can assume that P ∈ An−1[x1]wCk−1. Hence we have shown
that J contains an element

D = ∂α +
∑
β

gβ∂
β ∈ An−1[x1]

where |α| = k is the smallest possible order for a non-zero element of An−1[x1] and
|β| 6 k − 1.

Let β be an n-tuple of non-negative integers whose first coordinate is zero. Write
ei for the n-tuple which has 1 in the ith coordinate and zeroes elsewhere. We will use
the following easily proved identities:

[d, ∂β] = λ(β)∂β

[h, ∂β] = −
n∑
i=2

βihi∂
β−ei .
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It follows from these identities that

[d + h,D]− λ(α)D ≡
n∑
i=2

(d(gi) + aigi − αihi)∂α−ei (modCk−2),

where gi = gα−ei . But [d + h,D] − λ(α)D ∈ J w An−1[x1] has order smaller than k,
so it is zero. In particular

d(gi) + aigi − αihi = 0 (3·7)

for i = 2, . . . , n. Note that this implies that gi � 0 for some i = 2, . . . , n. Suppose
that gi0� 0. Applying ∂j , j� 1 to (3.7), we obtain

∂j(d(gi0 )) + ai0∂j(gi0 ) = 0.

Since [d, ∂j] = −aj∂j when j� 1, this last equation becomes

d(∂j(gi0 )) + (aj + ai0 )∂j(gi0 ) = 0.

Since K[x] is d-simple by Theorem 3·3, it follows that ∂j(gi0 ) ∈ K. Moreover, if
∂j(gi0 )� 0 then ai0 + aj = 0, which contradicts the hypotheses. Thus ∂j(gi0 ) = 0 for
j = 2, . . . , n, and so gi0 ∈ K[x1]. Therefore d(gi0 ) = ∂gi0/∂x1 and

deg (d(gi0 )) < deg (gi0 ) < deg (ai0gi0 − αi0hi0 ),
a contradiction. Thus the theorem is proved.

Let λ2, . . . , λn ∈ C be linearly independent over Q, and consider the element

s = ∂1 +
n∑
i=2

(λixix1 + 1)∂i +
n∑
i=2

2xi.

Stafford proved in [Sta, theorem 1·1] that An/Ans is a simple An-module, thus show-
ing that there exist non-holonomic simple An-modules when n > 2; see also [KrL,
theorem 8·7]. Of course this example is a special case of Theorem 3·6. Note that
we have turned Stafford’s example from a right module into a left module with the
help of the standard transposition; see [Cou, chapter 16, section 2] for details. This
particular example does not work when the field of constants is Q. However, Theo-
rem 3·6 can be applied in this case too; it is enough to choose ai = xi1 and bi = hi = 1,
for example. Finally, in [Sta, proposition 2·2], Stafford gives another example of a
non-holonomic simple module, this time over A2, which cannot be written in the
form of Theorem 3·6. It would be interesting to see if the theorem can be extended
to include this second example.

4. Quadric surfaces

We shall now combine the results of Sections 2 and 3 to construct simple D(X)-
modules when X is a non-singular quadric surface. Let K be an algebraically closed
field of characteristic zero. The equation x2

1 + x2x3 = 1 determines a non-singular
quadric X in A2(K).

Let U be the principal open set of X defined by x1� 0. The coordinate ring O(U )
is obtained by localising O(X) at the powers of x1. Now U is a select variety and its
module of derivations is free with basis

∆2 = ∂2 − x3(2x1)−1∂1 and ∆3 = ∂3 − x2(2x1)−1∂1.
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By Theorems 3·3 and 2·2 the ring O(U ) is δ-simple with respect to the derivation
δ = ∆2 − (1− x2x3)∆3. Moreover

d = −2x1δ = (x3 − x2x
2
1)∂1 − 2x1∂2 + 2x3

1∂3

is a derivation of O(X). The following result comes from [Arc, theorem 2·5·23], but
we give a more direct proof.

Theorem 4·1. O(X) is d-simple with respect to d = (x3 − x2x
2
1)∂1 − 2x1∂2 + 2x3

1∂3.

Proof. Let J be a non-zero d-ideal of O(X). Since the minimal primes over a d-ideal
are also d-ideals, we can assume that J is prime. Let Jx1 be the localization of J at
the powers of x1. Thus Jx1 is a d-ideal of O(U ). But d = −2x1δ, so O(U ) is a d-simple
ring. Hence 1 ∈ Jx1 . Consequently J contains a power of x1 and, because it is prime,
it contains x1. Since J is a d-ideal we get that d(x1) = x3 − x2x

2
1 ∈ J . Therefore

x3 ∈ J . But this implies that 1 = x2
1 + x2x3 ∈ J , which completes the proof.

It does not seem to be known whether the ring of coordinates of a non-singular
quadric hypersurface is d-simple. Unfortunately the obvious generalization of the
derivation of Theorem 4·1 to higher dimension does not work.

Theorem 4·2. Let h = 2x1x3 and d = (x3 − x2x
2
1)∂1 − 2x1∂2 + 2x3

1∂3. Then
D(X)/D(X)(d + h) is a non-holonomic simple left D(X)-module.

Proof. Put M = D(X)/D(X)(d + h). Localizing at x1 we have that

Mx1%D(U )/D(U )(δ − x3).

Now D(U ) contains the Weyl algebra A2 generated by x2, x3 and ∆2,∆3. Moreover
δ − x3 ∈ A2. By Theorem 3·6 the module A2/A2(δ − x3) is simple. Thus by Theorem
2·2(2) it follows that Mx1 is a simple D(U )-module. Finally, by Theorem 2·1, we
conclude that M itself is a simple D(X)-module.

This approach is not limited to quadric surfaces; it can also be applied to any
select variety. The proof of the next result is omitted since it is a straightforward
application of Theorems 2·2 and 3·6.

Theorem 4·3. Let X be a select variety of Am(K). Suppose that X has dimension
n 6 m and coordinates x1, . . . , xn. For 2 6 i 6 n, let ai, bi, hj be non-zero elements of
K[x1] such that:

(1) a2, . . . , an are linearly independent over Q and
(2) deg (ai) > max {deg (bi),deg (hi)} for i = 2, . . . , n;

where deg denotes the degree as a polynomial in x1. If d = ∂1 +
∑

i>2(xiai + bi)∂i and
h =

∑
i>2 hixi then D(X)/D(X)(d + h) is a simple D(X)-module.

Here is a very easy recipe for constructing simple examples of select varieties. Let
F (u2, . . . , un) be a polynomial of degree > 1 and coefficients in K; and let k > 1 be
an integer. Denote by X the variety of An+1(K) defined by

uk1 + F (u2, . . . , un) = 0 and u1v = 1.

Proposition 4·4. X is a select variety of dimension n− 1.
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Proof. Let I be the ideal ofX in the polynomial ringK[u1, . . . , un, v]. Put y = v+I

and xi = ui + I, for 1 6 i 6 n. By [McR, proposition 15·1·17], the module Ω1(X) is
generated by dx1, . . . , dxn and dy, subject to the relations

kxk−1
1 dx1 +

n∑
i=2

(∂F/∂xi)dxi and ydx1 + x1dy = 0.

From these relations we deduce that

dx1 = −k−1yk−1
n∑
i=2

(∂F/∂xi)dxi and dy = −y2dx1.

Thus Ω1(X) is a free module with basis {dx2, . . . , dxn}. Hence X is a select variety
with coordinates x2, . . . , xn.

Of course one would like to have more examples of varieties to which these tech-
niques could be applied; especially of varieties which were not select.
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