A DICRITICAL FOLIATION WITH ONE SINGULARITY AND
NO ALGEBRAIC SOLUTIONS

S. C. COUTINHO, JORGE OLIVEIRA, AND GABRIEL BARRUCI DA SILVA

ABSTRACT. We give an example of a family of dicritical singular holomorphic
foliations of the projective plane, with one singular point, whose very generic
elements do not have any algebraic solutions.

1. INTRODUCTION

In 1979 J.-P. Jouanolou published his now famous example of a singular holomor-
phic foliation of the complex projective plane P? without algebraic solutions [12].
Since then many other examples of such foliations have been found, see, for exam-
ple, [16] and [6]. The foliations in these examples are, most of them, non-degenerate
and non-dicritical.

More recently there has been a flurry of papers on holomorphic foliations of P?
with one singularity. Some of these papers have presented examples of holomorphic
foliations with one singularity and no algebraic solutions, as is the case of [1], [2],
[10], and [7]. However, in all these examples the foliations are non-dicritical.

The main result of this paper is Theorem 4.6, which states that the very generic
element of a family of dicritical holomorphic foliations with one singularity, to be
defined in Section 3, does not have any algebraic solutions. As part of the proof of
this theorem, we show, in Section 4, that the family contains a foliation without
any algebraic solutions. This requires that we find an upper bound for the degree
of the algebraic solutions of the foliation. The strategy we use to do this can be
applied to other examples, as shown in [8].

The paper is structured as follows. In Section 2 we collect a number of basic
results on singular holomorphic foliations of P2. The family of dicritical singular
holomorphic foliations is defined in Section 3, where we also prove part of Theorem
4.6, except for the analysis of the example of a foliation without algebraic solutions,
which is the content of Section 4. Finally, it should be pointed out that several
results in this paper require computer assisted proofs, which were obtained with
the help of the computer algebra system Axiom [9].
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2. PRELIMINARIES

In this Section we collect a number of basic results on singular holomorphic
foliations that will be used throughout the paper. Given a polynomial f € C[z,y]
and a non-negative integer k, we denote by f; the homogeneous component of
degree k of f. The order v,(f) of f at p = (zo,y0) € C? is the smallest k > 0 for
which the homogeneous component of degree k of f(x+xo,y~+yo) is non-zero. Both
definitions will also be applied to power series in two variables when p = (0, 0).

2.1. Basic concepts. A singular holomorphic foliation F over the complex projec-
tive plane P? is defined by a 1-form Q = Adz+ Bdy+Cdz, where A, B,C € Clz,y, 2]
are homogeneous polynomials of degree d + 1 > 1 such that zA + yB + zC = 0.
The 1-forms for which this condition holds are called projective.

A point p € P? is singular for F if A(p) = B(p) = C(p) = 0. By [12, Proposition
4.1, p. 126], all foliations of P? have a singular point. The set of singular points of
F will be denoted by Sing(F). By Bézout’s Theorem, this set is finite if and only if
ged(A, B, C) = 1. In this case the integer

d=deg(A) —1=deg(B) —1=deg(C) -1

is the degree of F, which we will denote by deg(F).

From now on we will use the word foliation as an abbreviation of singular holo-
morphic foliation with a finite number of singularities. In particular, we always
assume that, when the foliation is defined by a projective homogeneous 1-form
Q = Adzx + Bdy + Cdz, then ged(A, B,C) = 1.

If U is the open set of P? whose points have non-zero z-coordinate and U — P?
is the inclusion map, then F|y is defined by the 1-form

Qly = Az, y, 1)dx + B(z,y,1)dy.

Conversely, a foliation can be defined by a 1-form w = adxz+bdy, where a,b € Clz, y]
and ged(a,b) = 1. In order to do this, we take the pullback 7*(w) of w under the
map 7 : U — C? defined by n([x : y : 2]) = (x/2z,y/z) and multiply the resulting
form by the smallest power of z that eliminates the poles. One easily checks that
the resulting 1-form is projective. This form will be called the projectivization of
w. From now on we will identify C? with the open set z # 0 of P2. If

e = max{deg(a),deg(b)}
and J is the foliation of P? defined by w, then

e —1 when za. + yb. =0,

deg(F) = {

e otherwise,

where a, and b, denote the homogeneous components of degree e of a and b.

Let U = C? be the open set z # 0 of P? and let Q|y = adx + bdy. The
algebraic multiplicity of Q at po = (0,0) is the non-negative number v(Q) =
min{vyp, (a), vp, (b)}. When za, + yb, = 0, the singularity py is said to be dicritical.
A foliation is dicritical if it has at least one dicritical singularity.

Let F € C[z,y, z] be a non-constant square-free homogeneous polynomial. The
algebraic curve

V(F) ={peP?| F(p) =0}
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is an algebraic solution of the foliation F if QAdF = F'n for some polynomial 2-form
1 with homogeneous coeffcients and degree d. If F' £ z and U is the open set z # 0,
then w = Q|y = adzx + bdy, and the previous equation is equivalent to

(2.1) wAdf = gfdx A dy,

where f = F(x,y,1) and g € C[z,y]. The polynomial g is the co-factor of f, and
its degree is less than or equal to d. In this case we often write simply that f is
an algebraic solution of F with co-factor g. Setting 0, = 0/0x and 9, = 9/0y,
equation (2.1) can also be written as D(f) = ¢gf, where D = —bJ, + a0y is the dual
derivation of w. Moreover, by [13, Theorem 2.1, p. 13] if f is an algebraic solution
of w then so are its irreducible factors. In particular, if a foliation has an algebraic
solution, then it has one that is irreducible.

Let F be a foliation on P? defined by the homogeneous projective 1-form Q. A
projective transformation o is an isotropy of F if o*(Q) = AQ, for some non-zero
complex number \. When this happens we also say that F is invariant under o.
The set of all isotropies of &, denoted by iso(F), is a group.

By abuse of notation we will denote by ¢ both, a projective transformation, and
its restriction to the open set z # 0 of P2. Thus, given a polynomial f € Clx,]
it makes sense to compute the pullback o*(f), which we will also denote by f°.
When f? = puf, for some p € C\ {0}, the polynomial f is said to be semi-invariant
under o.

Lemma 2.1. Let T be a foliation on P? defined on C? by the 1-form w. If o is an
isotropy of finite order of a foliation F and ¢ € Clx,y| is an irreducible algebraic
solution of F, then there exists k > 0 such that f = ¢ - @7 --- qb"k is a square-free
algebraic solution of F that is semi-invariant under o. Moreover, if g is the co-
factor of f and o*(w) = M\w, for some non-zero X € C2, then o*(g) = Adet(o)~g.

Proof. Let ¢ be an algebraic solution of F with co-factor . Then,
(2.2) Aw A d(¢7) = 0" (w A dop) = o™ (yddx A dy) = 7 ¢ det(o)dx A dy.

By induction, ¢7 is an algebraic solution of F for all i > 0. Now let k be the
smallest positive integer for which there exists a non-zero complex number g such
that (;S‘Tkﬂ = u¢. For such k, the polynomial f in the statement of the lemma
satisfies

k » k - koo
(2.3) ()=o) =]]¢"" =u]]¢" =ns
1=0 1=0 1=0

Thus, f is semi-invariant. It is also square-free because, if ¢7 = ng"e, for non-
negative integers m > £ and v € C\ {0}, then
m—£
7 =ve;
so that, m — £ > k, by our choice of k. Moreover, by [13, Lemma 1.6, p. 12], f is
also an algebraic solution of F. Finally, replacing ¢ with f and v with ¢ in (2.2), it
follows from (2.3) that g7 = Adet(o) ™ 1g. O

2.2. Resolution of singularities. In order to use a computer to show that a
given foliation does not have any algebraic solutions, we need an upper bound on
the degrees of these solutions. To this end we will use blow-ups to resolve the
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singularities of the foliation. The blow-up of A% with centre at the origin is the
surface
B = {((z,y),[u:v]) € C* x P! : 2v = yu}.
The blow-up map is the morphism ¢ : B — A? defined by ¢((x,y), [u: v]) = (z,y).
The surface B is the union of the open affine sets given by u # 0 and v # 0, both
of which are isomorphic to C2. Assuming that v # 0 and setting #; = u/v and
y1 = ¥y, the isomorphism follows by rewriting the equation that defines B in the
form & = (u/v)y = z1y1. Under this identification, the restriction of ¢ to Bj,0, is
the map
by : C? =2 Bloro — C?

given by ¢,(x1,y1) = (z1y1,¥1). Similarly, denoting by z and ys2 the coordinates
of C? = Buxo, the restriction of ¢ to this open set is the map ¢, defined by
Du(@2,y2) = (22, 2y2).

Let f € Clx,y] and consider the curve C' = V(f) C C2 If f has multiplicity
v = vp,(f) at po = (0,0), its strict transform C is the curve in B defined in the
open sets B, and B, by the polynomials

(2.4) fo(xi,y1) =y "on(f) and fu(wa,y2) = x5 ¢, (f)-

The strict transform of a foliation defined in C2 by the 1-form w = adz + by, with
a singularity at the origin py = (0,0), can be similarly defined in Bj,.o and Bj,-g
by the 1-forms y; “(¢y)* (w) and x5 *(¢y)*(w), where

~Jmin{vy,(a), vy, (0) } when py is non-dicritical,
| min{vp,(a), v (b))} +1  when py is dicritical.

Let w be a 1-form with a singularity at the origin. This singularity is said to be
reduced if at least one of the eigenvalues of the matrix

[ ob/Ox  0b/dy

(2:5) —0a/0x —da/dy

x=y=0
is non-zero and, when both are non-zero, their ratio is not a positive rational
number. The singularities of a holomorphic foliation can always be transformed,
by a succession of blow-ups, into reduced singularities, see [14] or [11, p. 119-138].
We finish with a few facts about reduced singularities that will be used in later
sections. Without loss of generality we may assume that the singularity is the
origin. When both eigenvalues of (2.5) are non-zero, the singularity is said to be
non-degenerate, when one of them is zero, it is called a saddle-node. By [4, p. 97],
in both cases the foliation has two transversal separatrices at the singularity. If the
singularity is a saddle-node, the separatrix tangent to the eigenvector with non-zero
eigenvalue is the strong separatrix, while the one tangent to the eigenvector with
null eigenvalue is the weak separatriz.

2.3. Indices. Let S be a germ of irreducible curve at a point py = (0,0) € C?, given
locally by the vanishing of a power series f = f,,, + frn+1+- - -, where m is the order
of f. Its strict transform S is defined as in (2.4). By [5, Theorem 3.2.7, p. 73] since
S is an irreducible germ, its strict transform meets E at only one point which we
denote by pg. If S is non-singular and its intersection with E is transversal, then
Upo (S) = V%(g) =1, by [5, Theorem 5.3.5, p. 83]. Thus, by Noether’s Formula
[5, Theorem 3.3.1, p. 79|, if S; and S are two germs of irreducible curves which
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intersect at pg and whose strict transforms are non-singular and transversal to F,
then o
1 if S1NSy =0,
(Sl : SQ)po = . =~ =
2 if S;NSy#D are transversal.

Now, let F be a foliation defined in C? by a l-form w = adz + bdy and let
f € C[z,y] be such that C = V(f) C C? is an algebraic solution of F. Assuming
that f(0,0) = 0, it follows from [15, Lemma 2.4, p. 153] that there exist convergent
power series g, h and a 1-form 7, with power series coefficients, such that f and h
are co-prime and

(2.6) gw = hdf + fn,

in a neighbourhood of (0,0). Denoting the origin by pg, the GSV-index Z(F, C, po)
is the vanishing order of (h/g)|c at po, see [3, p. 24]. If C1,. .., Cy are the branches
of C at pg, then by [3, p. 38],

k
(2.7) 2(F,Copo) = Y _ZUF,Cipo) =2 Y (Ci- Cj)py-
i=1 1<i<j<k
Note that k& need not be equal to m, because C' can have singular branches. In the
next proposition we give the values of Z in some special cases. But, before we state
it, we need a definition. The Milnor number of F at pg is

1(F,po) = dime ((sz)> ;

where O,, is the localization of Clx,y| at the origin and (a,b) is the ideal of O,
generated by the coefficients a and b of w. A proof of the next proposition can be
found in [3, p. 39-40].

Proposition 2.2. Let S be a germ of curve through py € C? that is invariant under
the germ of a one dimensional foliation F. If py ¢ Sing(F) then Z(F, S, py) = 0.
On the other hand, if po € Sing(F) is a saddle-node, then

if S is the strong separatriz at p,

1
2(3:7 S7 pO) = . . .
w(F,po) +1 if S is the weak separatriz at p.

3. THE FAMILY
Given complex numbers
ao, a1, az, by and by,

let G = S(ao, a1, as, by, by) be the foliation on P? defined by the 1-form adz + bdy,
where a,b € C[z, y| are the polynomials whose monomials and respective coefficients
are given in Tables 1 and 2.

Theorem 3.1. If as # 0 then Sing(G) = {[0 : 0 : 1]} and this singularity is
dicritical. Moreover, the line at infinity is not an algebraic solution of G.

Proof. Let Q = Adx+ Bdy+Cdz be the homogeneous projective 1-form that defines
the foliation §. Since the singularities of § are the common zeroes of A, B, and C,
we apply Axiom’s Grobner Factorization Algorithm to the ideal I of

Clao, a1, az, bo, b1][z,y]
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Monomials Coefficients

z? 4

Ty 4

:):2y 4bg + 12a9

J;Sy dapby + 12a0?

zty b1 + 4a1 + 4ao?

xy2 4b1 + 12a1

x2y2 (bo + 4a0)b1 + 8a1bg + 24apai

x3y? aobob1 + 4aga1by + 2as + 12a02a1

y? das

xy’ b12 + 8a1b1 + 6asby + 16agas + 12a12

x2y3 a0b12 =+ ( a1bg + 4a0a1)b1 + ( 2apas + 4a12)b0 =+ 12a02a2 + 12(10(112
y4 4a9b1 + 8aias

:By4 a1b12 + (a2bo + 4a12)b1 + 6a1a2bg + 16agaiaz + 4a13
y° az2b1? 4 4a1a2b1 + 2a22by + 8agaz? + 4aiZaz

TABLE 1. Coefficients of a in adzx + bdy.

Monomials Coefficients

x2 —4

x3 —12ag

x4 —12a0?

z° —by — 4a1 — 4ag?

2y —12a1

3y —bob1 — 4a1 by — 24apay

xzty —agpbob1 — 4 agai1by — 2a2 — 12ap2a;

:cy2 —12a2

x2y? —b12 — da1by — 2a2bo — 24apas — 12a;12

:c3y2 —a0b12 + (—a1b0 — 4(10(11) b1 + (—2a0a2 — 4(112) bo — 12a02a2 — ].20,00,12
zy3 —16a1a2

:t:2y3 —a1b12 + (—a2b0 — 4a12) b1 — 6ajaz2bg — 16agaiaz — 4a,3
y4 —8(122

:t:y4 fa2b12 — 4aia9b1 — 2a2260 — 8a0a22 — 4dai2as

TABLE 2. Coefficients of b in adx + bdy.

generated by A, B, and C. All the ideals returned by the algorithm contain as,
except the one that is generated only by x and y. Since we are assuming that
as # 0, we are only concerned with this last ideal. Therefore, when as # 0, the
only singularity of G is the one with + = y = 0. But the only point of P? with
x=y=0is [0:0: 1]. Hence, this is the only singularity of G under the hypothesis
that as # 0. Since the 1-form adx + bdy defined above has algebraic multiplicity
2 at [0:0: 1] and the homogeneous component of a is 4xy, and that of b if —4x2,
it follows that [0 : 0 : 1] is a dicritical singularity of §. Finally, the line at infinity
z = 0 cannot be an algebraic solution of Gy, because neither the homogenization of
a, nor that of b, is a multiple of z. ([l

Let A, B and C be homogeneous polynomials of degree d +1 > 2 in z, y and
z with complex coefficients. Since the vector space of homogeneous polynomials of
degree d+1 in C[z, y, z] has dimension (df), the triple (A, B, C') can be regarded as
a point in a projective space of dimension Ny = 3((1;2) —1. Under this identification,
every holomorphic foliation of degree d 4 1 corresponds to a point of PNe,
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Theorem 3.2. The projective closure & of the family G(ag,a1,as,bo,b1) is an
irreducible subset of PN+,

Proof. Let w = adx +bdy be the 1-form that defines the foliation G(ag, a1, as, bo, b1)
in the open set z # 0 and let A and B be the homogenizations of a and b with respect
to z. The homogeneous 1-form that corresponds to w is Q = Adx + Bdy + Cdz,
where A + yB = —zC. Denoting by «;;, and ;; the coefficients of z'y?2°~"7 in
A and B, we have that v, ; = —(a;—1,; + 8i,j—1). In particular, all these coefficients
are polynomials in Clag, a1, as,bg, b1]. Now, by Tables 1 and 2,

_Bso P @03 o, 021t Bs0 o 012+ B
1277 12 470 4 b 4
Set I = {040’3, 12,021, 62’1, 53’0}. ThUS, for all 0 < 7/,] <5 such that Q5 g, Bi,j ¢ ]I,
there exist polynomials ¢; ;,v;; € C[I], such that o;; = ¢;; and B;; = 5 ;.

Hence, the ideal J generated by

Q5 — Gigy Big — Wiy and 5+ dim1j + Y o1,

in the polynomial ring A = Cla 5, 8i5,7i,; | 0 < ¢,7 < 5] is prime, because it is
defined by a system of linear polynomials in triangular form. Since a1 = 4, the
algebraic set defined by J is an affine variety in the open set a;; # 0 of PNe.
Moreover, this set is irreducible, because J is prime. Therefore, so is its projective
closure & in PN+, O

ag =

a9 =

Let 8, and H,, be the sets of homogeneous polynomials, and homogeneous 2-
forms, of degree n in x, y and z with complex coefficients and consider the projection

Tn @ & XP(8,) X P(Hy) — 6.
The set
Xn = {(QF,n) € 6 x 8, x Hy | QA dF = nF}
is closed in & x P(8,) x P(Hy). Since 7, is a proper map, the image m,(X,) is
closed in &. Thus, either
(3.1) Tn(Xpn) =& or dim(m,(X,)) < dim(&)

because & is irreducible. See also [12, pp. 158-160].

Recall that a very generic element of an irreducible projective variety X has
a property P if the set of points of X where P does not hold is contained in a
countable union of hypersurfaces of X.

Theorem 3.3. If G(ag, a1, as,bo, b1) has a foliation without any algebraic solutions,
then a very generic element of ® does not have any algebraic solutions.

Proof. Suppose that G(ag, a1, as, bg, b1) has a foliation without any algebraic solu-
tions, Then, the corresponding point in & is not contained in 7, (X,,) for any n > 1.
Hence, by (3.1), dim(7,(X,)) < dim(®) for all n > 1. In particular, all the m,(X,)
are contained in hypersurfaces of &. (]

4. THE EXAMPLE AND ITS PROPERTIES

Taking
a():bo:bl:al:o and (12:1/2,
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into the 1-form w that defines G(ayo, a1, az, by, b1) and dividing the resulting 1-form
by 4, we find the 1-form wg = adz + bdy, where

a = 2zy + 2y° + 22 + 23y? and b= —(22% + 62y® + 4y* + zty).
Let Go be the foliation defined by the homogenization of wy. Then, Qy = Adzx +
Bdy + C'dz, where
A= (2xyz3 + 29322 + 2212 + x3y2),
B = (—21:223 — 6xy?2? — Ayt — x4y),
C = (dzy®z + 4y° — 22°).
Since we chose ag = 1/2 when defining wy, it follows by Theorem 3.1, that Gy has

only one singularity, which is dicritical. Moreover, the line at infinity z = 0 cannot
be an algebraic solution of Gy, because neither A, nor B, is a multiple of z.

4.1. The isotropy group of Gj. Before we proceed to prove that Gy does not
have any algebraic solutions, we must determine its isotropy group.

Proposition 4.1. The isotropy group of Sg is generated by the projective transfor-
mation o(z,y, z) = (Cx, {3y, 2), where ¢ is a primitive 5th root of unity. Moreover,
U*(Qo) = Qo.

Proof. Let o be an isotropy of {2y. Since an isotropy permutes the singularities of
the foliation, p = [0 : 0 : 1] must be fixed under o. Thus, if M = (m; ;)1<i,j<3 is
the matrix of o, then my 3 = mg 3 = 0. Moreover, since M represents an element
of PGL3(C), we can assume, without loss of generality, that m3 3 = 1, so that

(4.1) o(z,y,z) = (Mmi1x + mi2y, ma12 + Moy, Ma1Z + Magy + 2).

A simple calculation shows that if 0*(Qg) = AQp, then ¢*(C) = AC, where C is
the coefficient of dz in €)y. Equating the coefficients of zy3z and y*z on both sides
of 0*(C) = A\C, we get

2 3
A= mgz(mnmm + 3m12m21) and mMi12Moy = 0.

Since A # 0, it follows from the first equation that maos # 0 so that, from the
second, mi2 = 0, which, in turn, implies that mi; # 0. Doing the same with the
coefficients of z2y%z, gives

2
0= mzlmzz(mnsz + m21m12) = MmMi11M21Myy,

where the last equality follows from mjs = 0. Thus, mgo; = 0. So o(C) = \C
reduces to

—4dmy1miyxy® (M3 z-+msoy+2)+2m3 x® —4mS,y° = —4myimi3, (—day®24-22° —4y°).

Hence, mg; = maz = 0, m$; = m3, and my; = m3,. It follows from the last two
equations that both mq; and mqs are roots of t° = 1, so that mzfl = Mas. There-
fore, if ¢ is a primitive 5-th root of unit, then iso(Go) is generated by o(z,y, z) =
(¢z,¢%y, 2). Finally,

A =miymy = (¢°)*¢=¢"0 =1,
so that o*(Q) = Q. O
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4.2. Bounding the degree of algebraic solutions. We begin by blowing up wo
at the origin. This gives rise to the foliation Gg in the blowup B defined by

Wy = (—4x1yf — 4y:13 + 2x1)dx1 + (—490?3/;1 — 6x1y% — x?yl — 2)dy1
in the open set u # 0 and by
Wy = (m%yg’ + 23:3;9% + 2yo + 2x2)da:2 + ((21‘3 — 4) Yo — 4$2)dy2

in the open set v # 0, see subsection 2.2 for the notation. This foliation has only
the singularity pg, given by xo = yo = 0, which is a saddle-node, hence reduced.
Moreover, the matrix (2.5) at this saddle-node is

3

whose eigenvalues are 0 and 6, with corresponding eigenvectors (—1,1) and (2,1).
In particular, both the weak and strong separatrices of §0 at xo = yo = 0 are
transversal to the exceptional divisor x5 = 0.

Let C be an algebraic solution of §g and let Bo = {C4,...,Ck} be the set of
irreducible branches of C' in a small neighbourhood of py. As pointed out before,
the number of irreducible branches of the curve C' at Do 1 need not coincides with
its algebraic multiplicity at that same point. Let ¢; = C; N E. If S and W are,
respectively, the strong and the weak separatrices of Gy at the saddle-node pg, then,
by [3, p. 39-40],

0 if po¢Ci
(42) (907 Z7p0) 1 if CZZS
pu+1 if C;=W,

where p is the Milnor number of So at po. By (2.7),

k
(4.3) 90,0 p() ZZ 90, C jva -2 Z (Cl 'CJ)PO
j=1

1<i<j<k
We begin by computing the intersection multiplicities between branches at pg, for
which we need the following lemma.

Lemma 4.2. If C; and C; are branches of C' at py then

€ = (E;E)q% =1 and (C;-Cj)p, = 1 Zf glmgl _@~ .
2 Zf C; ﬂCj = {po}.

Proof. Since the only point at which Gy and E are not transversal is po, it follows
that e; = 1, whenever ¢; # pg. However, if ¢; = pg, then C; equals one of the two
separatrices of w, at pg. But the separatrices are smooth and their tangents at
po have the directions of (—1,1) and (2,1) in the coordinates (xo,y2). Therefore,
e; = 1 also in this case. Turning now to the intersection multiplicities between C;
and C;, we have, by [5, Corollary 3.2.5, p. 73], that

vy (C1) = (G- By = 1,
for all 1 <i < k. Therefore, by [5, Lemma 3.3.4, p. 79|
(Cy - Cj)Po = V;DO(C )VPO(C ) =1
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when C; N C; = ) and
(Ci Ci)py = Vo (Ci)vpg (C) + (Ci - Cy)s = 1+ 1 =2
when 6’:06’;: {po}- O
It follows from Lemma 4.2 that

(4.4) Y (CiCiyo =

1<i<j<k

k(k—1) 1 if S,W e B¢
2 0 otherwise.
In the next lemma we compute the sum of GSV-indices in (4.3).
Lemma 4.3. The following formula holds for the sum of the Z-indices:
0 if S,W ¢ B¢
Zf S € Be andW%Bc

p+1 if WeBe and S ¢ Be
p+2 if S,WeBe

k
> 2(S0, Ci, po) = 2k +

i=1

Proof. Using the notation of Lemma 4.2, we have, by [3, pp. 39], that
2(S0, Ci,p) = 2(S0, Ci, 4i) — €2 + Loes,

where ¢y is the vanishing order of Gy along FE, that is £y = 1p(Gp) in the non-
dicritical case and £y = 19(Gp) + 1 in the dicritical case. Since pg is a dicritical
singularity of G and 1(SGp) = 2, it follows that £o = 3. Now, e¢; = 1, by Lemma
4.2, so that Z(So,Ci,p) = Z(S0,Ci,q;) + 2. Thus, by Proposition 2.2, equation
(4.2), and Lemma 4.2,

0 if C;#SW

Z(SO,C’Z-,p):2+ 1 if CZ‘:S
p+1 if Ci=W,

from which the result of the lemma is a straightforward consequence. O

Combining Lemma 4.3 with equation (4.4), formula (4.3) becomes

where
0 if S, W ¢ Be
(46) 7(0): 1 if Se€Be and W%BC

w+1 if W € Be and S%'BC
it S, W eBo

In order to use these formulas, we must first compute the Milnor number p of Gy
at pg. This can be done directly, using Grébner basis to compute the dimension of
the vector space C[x,y]/I, where I is the ideal generated by the coefficients of wy.
However, since Go has one singularity and degree 4, it follows by [4, Proposition
9.2, p. 176] that the Milnor number of Gy at its singularity is 21. Thus, by [4,
Proposition 4.13, p. 88],

(4.7) 1= p(So,p) =21 — 3% +4=16.
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vo27—4y Pairs k  Integer roots of (4.10) Degree of curve
0 27 (1,27),3,9) 83 ~4,10.0,6 6,10

1 23 (1,23) 7 ~3,9 9

17 —41 (—1,41) 12 ~7.13 13

16 —37 (-1,37) 11 —6,12 12

TABLE 3. Possible degrees for invariant curves.

Now, by [3, Proposition 3, p. 25], if C' is an algebraic solution of Gg, then
Z’(SO7 C,p()) = Ngo O — 02'
Since Go has degree 4, it follows that Ng, = Op2(6), so that Z(Gg, C,p) = 6n —n?,
where n = deg(C). Combining this with (4.5), we get
(4.8) 6n —n? =2k — k(k — 1) +~(C),
where, by (4.6) and (4.7),
0 if S,W¢Be
1 if SEBCandW¢BC
17 if W € B¢ and S¢‘BC
16 if S,W € Bg

(4.9) 1(C) =

Proposition 4.4. If C is an algebraic solution of Gy then deg(C) < 13.
Proof. By (4.8), 6n — n? = —k? + 3k + v, where v = v(C). Therefore, if such a C

exists, the quadratic equation
(4.10) n? —6n — k* 4+ 3k +v =0,
has an integer solution. In particular, its discriminant must be a perfect square, so

36 + 4(k* — 3k — ) = 4¢°,
for some integer q. Hence,

4% — (2k — 3)? = 27 — 4,
which is equivalent to

(2 — 2k + 3)(2q + 2k — 3) = 27 — 4.
We will say that (f1, f2) is a pair of factors for 27 — 4~ if f; < fo are integers such
that 27 — 4y = f1 fo. For each such pair, we have a system
2q — 2k +3=f1 and 2q+ 2k —3 = fs,

whose solution gives

_Ja—f1+6

==

Now, by (4.9), 27 — 4y € {27,23,—41,—37}. The factor pairs for these numbers,
with the corresponding values of k£ and n are listed in Table 3. Since the difference
between such factors is never even, it follows that k£ cannot be an integer in this

case. The statement of the proposition is an immediate consequence of the table.
O

k



12 S. C. COUTINHO, JORGE OLIVEIRA, AND GABRIEL BARRUCI DA SILVA

4.3. Searching for algebraic solutions. Now that we know an upper bound on
the degree of the algebraic solutions of Gg, we can search for them using a computer
to apply the method of undetermined coefficients. Since, by Theorem 3.1, z = 0
cannot be an algebraic solution of Gy, we need only search for algebraic solutions
in C2.

Let f € Cz,y] be an algebraic solution of Gy with co-factor g € Clz,y]. Then,
deg(g) < deg(Go) = 4. Moreover, since o*(wp) = wp, by Proposition 4.1 , it follows
from Lemma 2.1, that 0*(g) = (~*g = (g, where (> = 1. In particular, g5 = 0
and ¢go = ay?, for some complex number o. As we will see below, the other two
homogeneous components of g can be given a more precise description.

Denoting by n the degree of f and by m its algebraic multiplicity at the origin,

F=>fi
j=m

where f; is the homogeneous component of degree j of f. Since we are going to
work with the homogeneous components of f, it is convenient to write the vector
field dual to wq as

0 0
D = 2z + 23y + 29°)F + (4ay® + 4y4)8—m + 2x4a—y,

where E is the Euler vector field, because then we can use the fact that E(f;) = jf;.
As we saw in page 3, the equation wg A df = gfdx A dy is equivalent to D(f) = gf.

Equating homogeneous components of degree j + 4 on both sides of D(f) = gf, for
m—3 <3 <n, we get

af; of;
(11) 205+ 8)e s+ 50 S + 201 + 2y e+ Arg? 22 4 agp Ol

Ofjs1
+ 22% 6jgj = g1fj+3 + g2 fjro + 94 fj,

The equations corresponding to j = m—3 and j = n give g; = 2max and g4 = na3y.
Substituting the formulas for ¢i,..., g4, found above, into (4.11) and rearranging
the terms we get

(412) 2(m—j—3)zfizs + (o —2j — )y’ fipa + (n— j)a’y f—

(4961/2 8{;3:2 + 4yt 82]; + 22" 8?’;) —0.

For m <i <mn, let

J
L — X v, j—v
fi= E cjpx’y .
v=0
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Thus, (4.12) can be rewritten as

j+3 j+2
. 41 43— . it4—
2m—j=3) | D ciysuma Ty p(a=2—4) | D cjyamay T
1/1:() 1/2:()
J j+2
) 3 41— 1 j+a—
F =) | D Cua By T ) = a [ > vacjpa,a Ty T
v3=0 vs=0
j+1 Jj+1
1, 45— . 4 j+1—
—4 VsCjp1,ms Ly OV | =2 E (j+1—ve)ejr1pa ety Timve | =0.
vs=1 vg=0

From now on we will assume that ¢;, = 0 when j <m, j >n,orm <j < n
but v is less than 0 or greater j. Collecting the coefficients of 2"y7+4~" under each
summation sign we get

(413) 2(m —j - 3)Cj+3,r71 - (2] +4r+4 — Ck)Cj+27»,\
—4(r+1Dejprre1 =20 +5=7)¢jp10—a + (0= j)jr3 =0,

where m — 1 < r < n 4 3. Note that these are quadratic equations because « is
also a variable.

Theorem 4.5. The foliation Go has no algebraic solutions.

Proof. As we have already pointed out, it follows from Theorem 3.1 that the line
at infinity z = 0 cannot be an algebraic solution of §y. Now, by Proposition 4.4, if
f € Clz,y] is an algebraic solution of Gy, then deg(f) < 13. Moreover, f(0,0) =0
by [12, Proposition 4.1, p. 126]. By taking m = 1 and j = 0 when n = 1, the
system (4.13) reduces to

—4(r+1)c1p41 —2(—r)c1,—a =0

from which we get ¢1 9 = ¢1,1 = 0, because ¢;,_5 = ¢1,—4 = 0. Therefore, Gy does
not have any linear algebraic solutions. Similarly, to determine whether Gy has any
algebraic solutions, we have to solve one quadratic system for each pair (m,n) with
1 <m < n < 13. Using Axiom’s Grobner Factorization Algorithm to do this, we
find that the only solution in each case is ¢;,, = 0 for all choices of j and v. O

Together with Theorem 3.3, this completes the proof of our main theorem.

Theorem 4.6. A very generic elements of the projective closure & of the family
G(ao,a1,asz,bp,b1) does not have any algebraic solutions.

REFERENCES

1. Claudia R. Alcéntara, Special foliations on CP? with a unique singular point, Res. Math. Sci.
9 (2022), no. 1, Paper No. 15, 11.

2. Claudia R. Alcantara and Rubi Pantaleén-Mondragén, Foliations on CP? with a unique sin-
gular point without invariant algebraic curves, Geom. Dedicata 207 (2020), 193-200.

3. Marco Brunella, Birational geometry of foliations, Publicagbes Mateméticas do IMPA. [IMPA
Mathematical Publications], Instituto de Matemadtica Pura e Aplicada (IMPA), Rio de Janeiro,
2004.

4. F. Cano, D. Cerveau, and J. Déserti, Théorie élémentaire des feuilletages holomorphes sin-
guliers, Belin, Paris, 2013.

5. Eduardo Casas-Alvero, Singularities of plane curves, London Mathematical Society Lecture
Note Series, vol. 276, Cambridge University Press, Cambridge, 2000.



14

10.

11.

12.

13.

14.

15.

16.

S. C. COUTINHO, JORGE OLIVEIRA, AND GABRIEL BARRUCI DA SILVA

. S. C. Coutinho, A constructive proof of the density of algebraic Pfaff equations without alge-
braic solutions, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1611-1621.

. S. C. Coutinho and Luis Fernando Garcia Jales, Foliations with one singularity and finite
isotropy group, Bull. Sci. Math. 169 (2021), Paper No. 102988, 18.

. S. C. Coutinho and Jorge Oliveira, A family of dicritical foliations with one singularity, Qual.
Theory Dyn. Syst. 23 (2024), no. 2, Paper No. 66, 25. MR 4684048

. T. Daly et al., Aztom: the 30 year horizon, http://axiom-developer.org/axiom-website/

bookvol10.4.pdf, online, accessed: 14-October-2016.

Percy Ferndndez, Liliana Puchuri, and Rudy Rosas, Foliations on P2 with only one singular

point, Geom. Dedicata 216 (2022), no. 5, Paper No. 59, 17.

Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, Graduate

Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008.

J. P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., vol. 708, Springer-

Verlag, Heidelberg, 1979.

Irving Kaplansky, An introduction to differential algebra, Actualités Sci. Ind., No. 1251 =

Publ. Inst. Math. Univ. Nancago, No. 5, Hermann, Paris, 1957.

A. Seidenberg, Reduction of singularities of the differential equation Ady = Bdx, Amer. J.

Math. 90 (1968), 248-269.

T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités

Mathématiques, Hermann, Paris, 1998.

Henryk Zotadek, New ezamples of holomorphic foliations without algebraic leaves, Studia

Math. 131, no. 2, 137-142.

INSTITUTO DE COMPUTAGAO, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, AVENIDA ATHOS DA

SILVEIRA RAMOS, 274, CIDADE UNIVERSITARIA - ILHA DO FUNDAO, 21941-916 RIO DE JANEIRO,
RJ, BrRAZIL.

CI

Email address: collier@ic.ufrj.br
Email address: jorgelro@ic.ufrj.br

INSTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, P.O. Box 68530,
DADE UNIVERSITARIA - ILHA DO FUNDAO, 21941-909 R10 DE JANEIRO, RJ, BRAZIL.
Email address: barruci@gmail.com



