
A DICRITICAL FOLIATION WITH ONE SINGULARITY AND

NO ALGEBRAIC SOLUTIONS

S. C. COUTINHO, JORGE OLIVEIRA, AND GABRIEL BARRUCI DA SILVA

Abstract. We give an example of a family of dicritical singular holomorphic

foliations of the projective plane, with one singular point, whose very generic
elements do not have any algebraic solutions.

1. Introduction

In 1979 J.-P. Jouanolou published his now famous example of a singular holomor-
phic foliation of the complex projective plane P2 without algebraic solutions [12].
Since then many other examples of such foliations have been found, see, for exam-
ple, [16] and [6]. The foliations in these examples are, most of them, non-degenerate
and non-dicritical.

More recently there has been a flurry of papers on holomorphic foliations of P2

with one singularity. Some of these papers have presented examples of holomorphic
foliations with one singularity and no algebraic solutions, as is the case of [1], [2],
[10], and [7]. However, in all these examples the foliations are non-dicritical.

The main result of this paper is Theorem 4.6, which states that the very generic
element of a family of dicritical holomorphic foliations with one singularity, to be
defined in Section 3, does not have any algebraic solutions. As part of the proof of
this theorem, we show, in Section 4, that the family contains a foliation without
any algebraic solutions. This requires that we find an upper bound for the degree
of the algebraic solutions of the foliation. The strategy we use to do this can be
applied to other examples, as shown in [8].

The paper is structured as follows. In Section 2 we collect a number of basic
results on singular holomorphic foliations of P2. The family of dicritical singular
holomorphic foliations is defined in Section 3, where we also prove part of Theorem
4.6, except for the analysis of the example of a foliation without algebraic solutions,
which is the content of Section 4. Finally, it should be pointed out that several
results in this paper require computer assisted proofs, which were obtained with
the help of the computer algebra system Axiom [9].
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2. Preliminaries

In this Section we collect a number of basic results on singular holomorphic
foliations that will be used throughout the paper. Given a polynomial f ∈ C[x, y]
and a non-negative integer k, we denote by fk the homogeneous component of
degree k of f . The order νp(f) of f at p = (x0, y0) ∈ C2 is the smallest k ≥ 0 for
which the homogeneous component of degree k of f(x+x0, y+y0) is non-zero. Both
definitions will also be applied to power series in two variables when p = (0, 0).

2.1. Basic concepts. A singular holomorphic foliation F over the complex projec-
tive plane P2 is defined by a 1-form Ω = Adx+Bdy+Cdz, where A,B,C ∈ C[x, y, z]
are homogeneous polynomials of degree d + 1 ≥ 1 such that xA + yB + zC = 0.
The 1-forms for which this condition holds are called projective.

A point p ∈ P2 is singular for F if A(p) = B(p) = C(p) = 0. By [12, Proposition
4.1, p. 126], all foliations of P2 have a singular point. The set of singular points of
F will be denoted by Sing(F). By Bézout’s Theorem, this set is finite if and only if
gcd(A,B,C) = 1. In this case the integer

d = deg(A)− 1 = deg(B)− 1 = deg(C)− 1

is the degree of F, which we will denote by deg(F).
From now on we will use the word foliation as an abbreviation of singular holo-

morphic foliation with a finite number of singularities. In particular, we always
assume that, when the foliation is defined by a projective homogeneous 1-form
Ω = Adx+Bdy + Cdz, then gcd(A,B,C) = 1.

If U is the open set of P2 whose points have non-zero z-coordinate and U ↪→ P2

is the inclusion map, then F|U is defined by the 1-form

Ω|U = A(x, y, 1)dx+B(x, y, 1)dy.

Conversely, a foliation can be defined by a 1-form ω = adx+bdy, where a, b ∈ C[x, y]
and gcd(a, b) = 1. In order to do this, we take the pullback π∗(ω) of ω under the
map π : U → C2 defined by π([x : y : z]) = (x/z, y/z) and multiply the resulting
form by the smallest power of z that eliminates the poles. One easily checks that
the resulting 1-form is projective. This form will be called the projectivization of
ω. From now on we will identify C2 with the open set z 6= 0 of P2. If

e = max{deg(a),deg(b)}

and F is the foliation of P2 defined by ω, then

deg(F) =

{
e− 1 when xae + ybe = 0,

e otherwise,

where ae and be denote the homogeneous components of degree e of a and b.
Let U ∼= C2 be the open set z 6= 0 of P2 and let Ω|U = adx + bdy. The

algebraic multiplicity of Ω at p0 = (0, 0) is the non-negative number ν(Ω) =
min{νp0(a), νp0(b)}. When xaν + ybν = 0, the singularity p0 is said to be dicritical.
A foliation is dicritical if it has at least one dicritical singularity.

Let F ∈ C[x, y, z] be a non-constant square-free homogeneous polynomial. The
algebraic curve

V(F ) = {p ∈ P2 | F (p) = 0}
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is an algebraic solution of the foliation F if Ω∧dF = Fη for some polynomial 2-form
η with homogeneous coeffcients and degree d. If F 6= z and U is the open set z 6= 0,
then ω = Ω|U = adx+ bdy, and the previous equation is equivalent to

(2.1) ω ∧ df = gfdx ∧ dy,

where f = F (x, y, 1) and g ∈ C[x, y]. The polynomial g is the co-factor of f , and
its degree is less than or equal to d. In this case we often write simply that f is
an algebraic solution of F with co-factor g. Setting ∂x = ∂/∂x and ∂y = ∂/∂y,
equation (2.1) can also be written as D(f) = gf , where D = −b∂x+a∂y is the dual
derivation of ω. Moreover, by [13, Theorem 2.1, p. 13] if f is an algebraic solution
of ω then so are its irreducible factors. In particular, if a foliation has an algebraic
solution, then it has one that is irreducible.

Let F be a foliation on P2 defined by the homogeneous projective 1-form Ω. A
projective transformation σ is an isotropy of F if σ∗(Ω) = λΩ, for some non-zero
complex number λ. When this happens we also say that F is invariant under σ.
The set of all isotropies of F, denoted by iso(F), is a group.

By abuse of notation we will denote by σ both, a projective transformation, and
its restriction to the open set z 6= 0 of P2. Thus, given a polynomial f ∈ C[x, y]
it makes sense to compute the pullback σ∗(f), which we will also denote by fσ.
When fσ = µf , for some µ ∈ C\{0}, the polynomial f is said to be semi-invariant
under σ.

Lemma 2.1. Let F be a foliation on P2 defined on C2 by the 1-form ω. If σ is an
isotropy of finite order of a foliation F and φ ∈ C[x, y] is an irreducible algebraic

solution of F, then there exists k > 0 such that f = φ · φσ · · ·φσk

is a square-free
algebraic solution of F that is semi-invariant under σ. Moreover, if g is the co-
factor of f and σ∗(ω) = λω, for some non-zero λ ∈ C2, then σ∗(g) = λ det(σ)−1g.

Proof. Let φ be an algebraic solution of F with co-factor γ. Then,

(2.2) λω ∧ d(φσ) = σ∗(ω ∧ dφ) = σ∗(γφdx ∧ dy) = γσφσ det(σ)dx ∧ dy.

By induction, φσ
i

is an algebraic solution of F for all i ≥ 0. Now let k be the
smallest positive integer for which there exists a non-zero complex number µ such

that φσ
k+1

= µφ. For such k, the polynomial f in the statement of the lemma
satisfies

(2.3) σ∗(f) =

k∏
i=0

σ∗(φσ
i

) =

k∏
i=0

φσ
i+1

= µ

k∏
i=0

φσ
i

= µf.

Thus, f is semi-invariant. It is also square-free because, if φσ
m

= νφσ
`

, for non-
negative integers m > ` and ν ∈ C \ {0}, then

φσ
m−`

= νφ;

so that, m − ` ≥ k, by our choice of k. Moreover, by [13, Lemma 1.6, p. 12], f is
also an algebraic solution of F. Finally, replacing φ with f and γ with g in (2.2), it
follows from (2.3) that gσ = λ det(σ)−1g. �

2.2. Resolution of singularities. In order to use a computer to show that a
given foliation does not have any algebraic solutions, we need an upper bound on
the degrees of these solutions. To this end we will use blow-ups to resolve the
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singularities of the foliation. The blow-up of A2 with centre at the origin is the
surface

B = {((x, y), [u : v]) ∈ C2 × P1 : xv = yu}.
The blow-up map is the morphism φ : B→ A2 defined by φ((x, y), [u : v]) = (x, y).
The surface B is the union of the open affine sets given by u 6= 0 and v 6= 0, both
of which are isomorphic to C2. Assuming that v 6= 0 and setting x1 = u/v and
y1 = y, the isomorphism follows by rewriting the equation that defines B in the
form x = (u/v)y = x1y1. Under this identification, the restriction of φ to B|v 6=0, is
the map

φv : C2 ∼= B|v 6=0 −→ C2

given by φv(x1, y1) = (x1y1, y1). Similarly, denoting by x2 and y2 the coordinates
of C2 ∼= B|u6=0, the restriction of φ to this open set is the map φu defined by
φu(x2, y2) = (x2, x2y2).

Let f ∈ C[x, y] and consider the curve C = V(f) ⊂ C2. If f has multiplicity

ν = νp0(f) at p0 = (0, 0), its strict transform C̃ is the curve in B defined in the
open sets B|v 6=0 and B|u6=0 by the polynomials

(2.4) fv(x1, y1) = y−ν1 φ∗v(f) and fu(x2, y2) = x−ν2 φ∗u(f).

The strict transform of a foliation defined in C2 by the 1-form ω = adx+ by, with
a singularity at the origin p0 = (0, 0), can be similarly defined in B|v 6=0 and B|u6=0

by the 1-forms y−e1 (φv)
∗(ω) and x−e2 (φu)∗(ω), where

e =

{
min{νp0(a), νp0(b)} when p0 is non-dicritical,

min{νp0(a), νp0(b)}+ 1 when p0 is dicritical.

Let ω be a 1-form with a singularity at the origin. This singularity is said to be
reduced if at least one of the eigenvalues of the matrix

(2.5)

[
∂b/∂x ∂b/∂y
−∂a/∂x −∂a/∂y

]
x=y=0

is non-zero and, when both are non-zero, their ratio is not a positive rational
number. The singularities of a holomorphic foliation can always be transformed,
by a succession of blow-ups, into reduced singularities, see [14] or [11, p. 119-138].

We finish with a few facts about reduced singularities that will be used in later
sections. Without loss of generality we may assume that the singularity is the
origin. When both eigenvalues of (2.5) are non-zero, the singularity is said to be
non-degenerate, when one of them is zero, it is called a saddle-node. By [4, p. 97],
in both cases the foliation has two transversal separatrices at the singularity. If the
singularity is a saddle-node, the separatrix tangent to the eigenvector with non-zero
eigenvalue is the strong separatrix, while the one tangent to the eigenvector with
null eigenvalue is the weak separatrix.

2.3. Indices. Let S be a germ of irreducible curve at a point p0 = (0, 0) ∈ C2, given
locally by the vanishing of a power series f = fm+fm+1+ · · · , where m is the order

of f . Its strict transform S̃ is defined as in (2.4). By [5, Theorem 3.2.7, p. 73] since
S is an irreducible germ, its strict transform meets E at only one point which we

denote by p̃0. If S̃ is non-singular and its intersection with E is transversal, then

νp0(S) = νp̃0(S̃) = 1, by [5, Theorem 5.3.5, p. 83]. Thus, by Noether’s Formula
[5, Theorem 3.3.1, p. 79], if S1 and S2 are two germs of irreducible curves which
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intersect at p0 and whose strict transforms are non-singular and transversal to E,
then

(S1 · S2)p0 =

{
1 if S̃1 ∩ S̃2 = ∅,
2 if S̃1 ∩ S̃2 6= ∅ are transversal.

Now, let F be a foliation defined in C2 by a 1-form ω = adx + bdy and let
f ∈ C[x, y] be such that C = V(f) ⊂ C2 is an algebraic solution of F. Assuming
that f(0, 0) = 0, it follows from [15, Lemma 2.4, p. 153] that there exist convergent
power series g, h and a 1-form η, with power series coefficients, such that f and h
are co-prime and

(2.6) gω = hdf + fη,

in a neighbourhood of (0, 0). Denoting the origin by p0, the GSV-index Z(F, C, p0)
is the vanishing order of (h/g)|C at p0, see [3, p. 24]. If C1, . . . , Ck are the branches
of C at p0, then by [3, p. 38],

(2.7) Z(F, C, p0) =

k∑
i=1

Z(F, Ci, p0)− 2
∑

1≤i<j≤k

(Ci · Cj)p0 .

Note that k need not be equal to m, because C can have singular branches. In the
next proposition we give the values of Z in some special cases. But, before we state
it, we need a definition. The Milnor number of F at p0 is

µ(F, p0) = dimC

(
Op0

(a, b)

)
,

where Op0 is the localization of C[x, y] at the origin and (a, b) is the ideal of Op0
generated by the coefficients a and b of ω. A proof of the next proposition can be
found in [3, p. 39–40].

Proposition 2.2. Let S be a germ of curve through p0 ∈ C2 that is invariant under
the germ of a one dimensional foliation F. If p0 /∈ Sing(F) then Z(F, S, p0) = 0.
On the other hand, if p0 ∈ Sing(F) is a saddle-node, then

Z(F, S, p0) =

{
1 if S is the strong separatrix at p,

µ(F, p0) + 1 if S is the weak separatrix at p.

3. The family

Given complex numbers

a0, a1, a2, b0 and b1,

let G = G(a0, a1, a2, b0, b1) be the foliation on P2 defined by the 1-form adx + bdy,
where a, b ∈ C[x, y] are the polynomials whose monomials and respective coefficients
are given in Tables 1 and 2.

Theorem 3.1. If a2 6= 0 then Sing(G) = {[0 : 0 : 1]} and this singularity is
dicritical. Moreover, the line at infinity is not an algebraic solution of G.

Proof. Let Ω = Adx+Bdy+Cdz be the homogeneous projective 1-form that defines
the foliation G. Since the singularities of G are the common zeroes of A, B, and C,
we apply Axiom’s Gröbner Factorization Algorithm to the ideal I of

C[a0, a1, a2, b0, b1][x, y]
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Monomials Coefficients

x4 4
xy 4

x2y 4b0 + 12a0
x3y 4a0b0 + 12a02

x4y b1 + 4a1 + 4a03

xy2 4b1 + 12a1
x2y2 (b0 + 4a0)b1 + 8a1b0 + 24a0a1
x3y2 a0b0b1 + 4a0a1b0 + 2a2 + 12a02a1
y3 4a2
xy3 b1

2 + 8a1b1 + 6a2b0 + 16a0a2 + 12a12

x2y3 a0b1
2 + ( a1b0 + 4a0a1)b1 +

(
2a0a2 + 4a12

)
b0 + 12a02a2 + 12a0a12

y4 4a2b1 + 8a1a2
xy4 a1b1

2 +
(
a2b0 + 4a12

)
b1 + 6a1a2b0 + 16a0a1a2 + 4a13

y5 a2b1
2 + 4a1a2b1 + 2a22b0 + 8a0a22 + 4a12a2

Table 1. Coefficients of a in adx+ bdy.

Monomials Coefficients

x2 −4
x3 −12a0
x4 −12a02

x5 −b1 − 4a1 − 4a03

x2y −12a1
x3y −b0b1 − 4a1 b0 − 24a0a1
x4y −a0b0b1 − 4 a0a1b0 − 2a2 − 12a02a1
xy2 −12a2
x2y2 −b1

2 − 4a1b1 − 2a2b0 − 24a0a2 − 12a12

x3y2 −a0b1
2 + (−a1b0 − 4a0a1) b1 +

(
−2a0a2 − 4a12

)
b0 − 12a02a2 − 12a0a12

xy3 −16a1a2
x2y3 −a1b1

2 +
(
−a2b0 − 4a12

)
b1 − 6a1a2b0 − 16a0a1a2 − 4a13

y4 −8a22

xy4 −a2b1
2 − 4a1a2b1 − 2a22b0 − 8a0a22 − 4a12a2

Table 2. Coefficients of b in adx+ bdy.

generated by A, B, and C. All the ideals returned by the algorithm contain a2,
except the one that is generated only by x and y. Since we are assuming that
a2 6= 0, we are only concerned with this last ideal. Therefore, when a2 6= 0, the
only singularity of G is the one with x = y = 0. But the only point of P2 with
x = y = 0 is [0 : 0 : 1]. Hence, this is the only singularity of G under the hypothesis
that a2 6= 0. Since the 1-form adx + bdy defined above has algebraic multiplicity
2 at [0 : 0 : 1] and the homogeneous component of a is 4xy, and that of b if −4x2,
it follows that [0 : 0 : 1] is a dicritical singularity of G. Finally, the line at infinity
z = 0 cannot be an algebraic solution of G0, because neither the homogenization of
a, nor that of b, is a multiple of z. �

Let A, B and C be homogeneous polynomials of degree d + 1 ≥ 2 in x, y and
z with complex coefficients. Since the vector space of homogeneous polynomials of
degree d+1 in C[x, y, z] has dimension

(
d+2
2

)
, the triple (A,B,C) can be regarded as

a point in a projective space of dimensionNd = 3
(
d+2
2

)
−1. Under this identification,

every holomorphic foliation of degree d+ 1 corresponds to a point of PNd .
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Theorem 3.2. The projective closure G of the family G(a0, a1, a2, b0, b1) is an
irreducible subset of PN4 .

Proof. Let ω = adx+bdy be the 1-form that defines the foliation G(a0, a1, a2, b0, b1)
in the open set z 6= 0 and let A and B be the homogenizations of a and b with respect
to z. The homogeneous 1-form that corresponds to ω is Ω = Adx + Bdy + Cdz,
where xA+ yB = −zC. Denoting by αij , and βij the coefficients of xiyjz5−i−j in
A and B, we have that γi,j = −(αi−1,j +βi,j−1). In particular, all these coefficients
are polynomials in C[a0, a1, a2, b0, b1]. Now, by Tables 1 and 2,

a0 = −β3,0
12

, a1 = −β2,1
12

, a2 =
α0,3

4
, b0 =

α2,1 + β3,0
4

and b1 =
α1,2 + β2,1

4
.

Set I = {α0,3, α1,2, α2,1, β2,1, β3,0}. Thus, for all 0 ≤ i, j ≤ 5 such that αi,j , βi,j /∈ I,
there exist polynomials φi,j , ψi,j ∈ C[I], such that αi,j = φi,j and βi,j = ψi,j .
Hence, the ideal J generated by

αi,j − φi,j , βi,j − ψi,j and γi,j + φi−1,j + ψi,j−1,

in the polynomial ring A = C[αi,j , βi,j , γi,j | 0 ≤ i, j ≤ 5] is prime, because it is
defined by a system of linear polynomials in triangular form. Since α1,1 = 4, the
algebraic set defined by J is an affine variety in the open set α1,1 6= 0 of PN4 .
Moreover, this set is irreducible, because J is prime. Therefore, so is its projective
closure G in PN4 . �

Let Sn and Hn be the sets of homogeneous polynomials, and homogeneous 2-
forms, of degree n in x, y and z with complex coefficients and consider the projection

πn : G× P(Sn)× P(H4) −→ G.

The set

Xn = {(Ω, F, η) ∈ G× Sn ×H4 | Ω ∧ dF = ηF}
is closed in G × P(Sn) × P(Hd). Since πn is a proper map, the image πn(Xn) is
closed in G. Thus, either

(3.1) πn(Xn) = G or dim(πn(Xn)) < dim(G)

because G is irreducible. See also [12, pp. 158–160].
Recall that a very generic element of an irreducible projective variety X has

a property P if the set of points of X where P does not hold is contained in a
countable union of hypersurfaces of X.

Theorem 3.3. If G(a0, a1, a2, b0, b1) has a foliation without any algebraic solutions,
then a very generic element of G does not have any algebraic solutions.

Proof. Suppose that G(a0, a1, a2, b0, b1) has a foliation without any algebraic solu-
tions, Then, the corresponding point in G is not contained in πn(Xn) for any n ≥ 1.
Hence, by (3.1), dim(πn(Xn)) < dim(G) for all n ≥ 1. In particular, all the πn(Xn)
are contained in hypersurfaces of G. �

4. The example and its properties

Taking

a0 = b0 = b1 = a1 = 0 and a2 = 1/2,
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into the 1-form ω that defines G(a0, a1, a2, b0, b1) and dividing the resulting 1-form

by 4, we find the 1-form ω0 = ãdx+ b̃dy, where

ã = 2xy + 2y3 + 2x4 + x3y2 and b̃ = −(2x2 + 6xy2 + 4y4 + x4y).

Let G0 be the foliation defined by the homogenization of ω0. Then, Ω0 = Adx +
Bdy + Cdz, where

A =
(
2xyz3 + 2y3z2 + 2x4z + x3y2

)
,

B =
(
−2x2z3 − 6xy2z2 − 4y4z − x4y

)
,

C =
(
4xy3z + 4y5 − 2x5

)
.

Since we chose a2 = 1/2 when defining ω0, it follows by Theorem 3.1, that G0 has
only one singularity, which is dicritical. Moreover, the line at infinity z = 0 cannot
be an algebraic solution of G0, because neither A, nor B, is a multiple of z.

4.1. The isotropy group of G0. Before we proceed to prove that G0 does not
have any algebraic solutions, we must determine its isotropy group.

Proposition 4.1. The isotropy group of G0 is generated by the projective transfor-
mation σ(x, y, z) = (ζx, ζ3y, z), where ζ is a primitive 5th root of unity. Moreover,
σ∗(Ω0) = Ω0.

Proof. Let σ be an isotropy of Ω0. Since an isotropy permutes the singularities of
the foliation, p = [0 : 0 : 1] must be fixed under σ. Thus, if M = (mi,j)1≤i,j≤3 is
the matrix of σ, then m1,3 = m2,3 = 0. Moreover, since M represents an element
of PGL3(C), we can assume, without loss of generality, that m3,3 = 1, so that

(4.1) σ(x, y, z) = (m11x+m12y,m21x+m22y,m31x+m32y + z).

A simple calculation shows that if σ∗(Ω0) = λΩ0, then σ∗(C) = λC, where C is
the coefficient of dz in Ω0. Equating the coefficients of xy3z and y4z on both sides
of σ∗(C) = λC, we get

λ = m2
22(m11m22 + 3m12m21) and m12m

3
22 = 0.

Since λ 6= 0, it follows from the first equation that m22 6= 0 so that, from the
second, m12 = 0, which, in turn, implies that m11 6= 0. Doing the same with the
coefficients of x2y2z, gives

0 = m21m22(m11m22 +m21m12) = m11m21m
2
22,

where the last equality follows from m12 = 0. Thus, m21 = 0. So σ(C) = λC
reduces to

−4m11m
3
22xy

3(m31x+m32y+z)+2m5
11x

5−4m5
22y

5 = −4m11m
3
22(−4xy3z+2x5−4y5).

Hence, m31 = m32 = 0, m4
11 = m3

22 and m11 = m2
22. It follows from the last two

equations that both m11 and m22 are roots of t5 = 1, so that m3
11 = m22. There-

fore, if ζ is a primitive 5-th root of unit, then iso(G0) is generated by σ(x, y, z) =
(ζx, ζ3y, z). Finally,

λ = m3
22m11 = (ζ3)3ζ = ζ10 = 1,

so that σ∗(Ω0) = Ω0. �
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4.2. Bounding the degree of algebraic solutions. We begin by blowing up ω0

at the origin. This gives rise to the foliation G̃0 in the blowup B defined by

ωx =
(
−4x1y

5
1 − 4y31 + 2x1

)
dx1 +

(
−4x21y

4
1 − 6x1y

2
1 − x31y1 − 2

)
dy1

in the open set u 6= 0 and by

ωy =
(
x32y

3
2 + 2x42y

2
2 + 2y2 + 2x2

)
dx2 +

((
2x52 − 4

)
y2 − 4x2

)
dy2

in the open set v 6= 0, see subsection 2.2 for the notation. This foliation has only
the singularity p̃0, given by x2 = y2 = 0, which is a saddle-node, hence reduced.
Moreover, the matrix (2.5) at this saddle-node is[

4 4
2 2

]
whose eigenvalues are 0 and 6, with corresponding eigenvectors (−1, 1) and (2, 1).

In particular, both the weak and strong separatrices of G̃0 at x2 = y2 = 0 are
transversal to the exceptional divisor x2 = 0.

Let C be an algebraic solution of G0 and let BC = {C1, . . . , Ck} be the set of
irreducible branches of C in a small neighbourhood of p0. As pointed out before,
the number of irreducible branches of the curve C at p0 need not coincides with

its algebraic multiplicity at that same point. Let qi = C̃i ∩ E. If S and W are,

respectively, the strong and the weak separatrices of G̃0 at the saddle-node p̃0, then,
by [3, p. 39–40],

(4.2) Z(G̃0, C̃i, p̃0) =


0 if p̃0 /∈ C̃i
1 if C̃i = S

µ+ 1 if C̃i = W,

where µ is the Milnor number of G̃0 at p̃0. By (2.7),

(4.3) Z(G0, C, p0) =

k∑
j=1

Z(G0, Cj , p0)− 2
∑

1≤i<j≤k

(Ci · Cj)p0 .

We begin by computing the intersection multiplicities between branches at p0, for
which we need the following lemma.

Lemma 4.2. If Ci and Cj are branches of C at p0 then

ei = (C̃i · E)qi = 1 and (Ci · Cj)p0 =

{
1 if C̃i ∩ C̃j = ∅
2 if C̃i ∩ C̃j = {p̃0}.

.

Proof. Since the only point at which G̃0 and E are not transversal is p̃0, it follows

that ei = 1, whenever qi 6= p̃0. However, if qi = p̃0, then C̃i equals one of the two
separatrices of ωy at p̃0. But the separatrices are smooth and their tangents at
p̃0 have the directions of (−1, 1) and (2, 1) in the coordinates (x2, y2). Therefore,
ei = 1 also in this case. Turning now to the intersection multiplicities between Ci
and Cj , we have, by [5, Corollary 3.2.5, p. 73], that

νp0(Ci) = (C̃i · E)qi = 1,

for all 1 ≤ i ≤ k. Therefore, by [5, Lemma 3.3.4, p. 79]

(Ci · Cj)p0 = νp0(Ci)νp0(Cj) = 1.
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when C̃i ∩ C̃j = ∅ and

(Ci · Cj)p0 = νp0(Ci)νp0(Cj) + (C̃i · C̃j)p̃0 = 1 + 1 = 2

when C̃i ∩ C̃j = {p̃0}. �

It follows from Lemma 4.2 that

(4.4)
∑

1≤i<j≤k

(Ci · Cj)p0 =
k(k − 1)

2
+

{
1 if S,W ∈ BC

0 otherwise.

In the next lemma we compute the sum of GSV-indices in (4.3).

Lemma 4.3. The following formula holds for the sum of the Z-indices:

k∑
i=1

Z(G0, Ci, p0) = 2k +


0 if S,W /∈ BC

1 if S ∈ BC and W /∈ BC

µ+ 1 if W ∈ BC and S /∈ BC

µ+ 2 if S,W ∈ BC

Proof. Using the notation of Lemma 4.2, we have, by [3, pp. 39], that

Z(G0, Ci, p) = Z(G̃0, C̃i, qi)− e2i + `0ei,

where `0 is the vanishing order of G0 along E, that is `0 = ν0(G0) in the non-
dicritical case and `0 = ν0(G0) + 1 in the dicritical case. Since p0 is a dicritical
singularity of G0 and ν0(G0) = 2, it follows that `0 = 3. Now, ei = 1, by Lemma

4.2, so that Z(G0, Ci, p) = Z(G̃0, C̃i, qi) + 2. Thus, by Proposition 2.2, equation
(4.2), and Lemma 4.2,

Z(G0, Ci, p) = 2 +


0 if Ci 6= S,W

1 if Ci = S

µ+ 1 if Ci = W,

from which the result of the lemma is a straightforward consequence. �

Combining Lemma 4.3 with equation (4.4), formula (4.3) becomes

(4.5) Z(G0, C, p0) = 2k − k(k − 1) + γ(C),

where

(4.6) γ(C) =


0 if S,W /∈ BC

1 if S ∈ BC and W /∈ BC

µ+ 1 if W ∈ BC and S /∈ BC

µ if S,W ∈ BC

In order to use these formulas, we must first compute the Milnor number µ of G̃0

at p̃0. This can be done directly, using Gröbner basis to compute the dimension of
the vector space C[x, y]/I, where I is the ideal generated by the coefficients of ω0.
However, since G0 has one singularity and degree 4, it follows by [4, Proposition
9.2, p. 176] that the Milnor number of G0 at its singularity is 21. Thus, by [4,
Proposition 4.13, p. 88],

(4.7) µ = µ(G̃0, p̂) = 21− 32 + 4 = 16.
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γ 27− 4γ Pairs k Integer roots of (4.10) Degree of curve
0 27 (1, 27), (3, 9) 8, 3 −4, 10, 0, 6 6, 10
1 23 (1, 23) 7 −3, 9 9
17 −41 (−1, 41) 12 −7, 13 13
16 −37 (−1, 37) 11 −6, 12 12

Table 3. Possible degrees for invariant curves.

Now, by [3, Proposition 3, p. 25], if C is an algebraic solution of G0, then

Z(G0, C, p0) = NG0
· C − C2.

Since G0 has degree 4, it follows that NG0
= OP2(6), so that Z(G0, C, p) = 6n− n2,

where n = deg(C). Combining this with (4.5), we get

(4.8) 6n− n2 = 2k − k(k − 1) + γ(C),

where, by (4.6) and (4.7),

(4.9) γ(C) =


0 if S,W /∈ BC

1 if S ∈ BC and W /∈ BC

17 if W ∈ BC and S /∈ BC

16 if S,W ∈ BC

Proposition 4.4. If C is an algebraic solution of G0 then deg(C) ≤ 13.

Proof. By (4.8), 6n− n2 = −k2 + 3k + γ, where γ = γ(C). Therefore, if such a C
exists, the quadratic equation

(4.10) n2 − 6n− k2 + 3k + γ = 0,

has an integer solution. In particular, its discriminant must be a perfect square, so

36 + 4(k2 − 3k − γ) = 4q2,

for some integer q. Hence,

4q2 − (2k − 3)2 = 27− 4γ,

which is equivalent to

(2q − 2k + 3)(2q + 2k − 3) = 27− 4γ.

We will say that (f1, f2) is a pair of factors for 27− 4γ if f1 ≤ f2 are integers such
that 27− 4γ = f1f2. For each such pair, we have a system

2q − 2k + 3 = f1 and 2q + 2k − 3 = f2,

whose solution gives

k =
f2 − f1 + 6

4
.

Now, by (4.9), 27 − 4γ ∈ {27, 23,−41,−37}. The factor pairs for these numbers,
with the corresponding values of k and n are listed in Table 3. Since the difference
between such factors is never even, it follows that k cannot be an integer in this
case. The statement of the proposition is an immediate consequence of the table.

�
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4.3. Searching for algebraic solutions. Now that we know an upper bound on
the degree of the algebraic solutions of G0, we can search for them using a computer
to apply the method of undetermined coefficients. Since, by Theorem 3.1, z = 0
cannot be an algebraic solution of G0, we need only search for algebraic solutions
in C2.

Let f ∈ C[x, y] be an algebraic solution of G0 with co-factor g ∈ C[x, y]. Then,
deg(g) ≤ deg(G0) = 4. Moreover, since σ∗(ω0) = ω0, by Proposition 4.1 , it follows
from Lemma 2.1, that σ∗(g) = ζ−4g = ζg, where ζ5 = 1. In particular, g3 = 0
and g2 = αy2, for some complex number α. As we will see below, the other two
homogeneous components of g can be given a more precise description.

Denoting by n the degree of f and by m its algebraic multiplicity at the origin,

f =

n∑
j=m

fj ,

where fj is the homogeneous component of degree j of f . Since we are going to
work with the homogeneous components of f , it is convenient to write the vector
field dual to ω0 as

D = (2x+ x3y + 2y2)E + (4xy2 + 4y4)
∂

∂x
+ 2x4

∂

∂y
,

where E is the Euler vector field, because then we can use the fact that E(fj) = jfj .
As we saw in page 3, the equation ω0 ∧ df = gfdx∧ dy is equivalent to D(f) = gf .
Equating homogeneous components of degree j+ 4 on both sides of D(f) = gf , for
m− 3 ≤ j ≤ n, we get

(4.11) 2(j + 3)xfj+3 + jx3yfj + 2(j + 2)y2fj+2 + 4xy2
∂fj+2

∂x
+ 4y4

∂fj+1

∂x

+ 2x4
∂fj+1

∂y
= g1fj+3 + g2fj+2 + g4fj ,

The equations corresponding to j = m−3 and j = n give g1 = 2mx and g4 = nx3y.
Substituting the formulas for g1, . . . , g4, found above, into (4.11) and rearranging
the terms we get

(4.12) 2(m− j − 3)xfj+3 + (α− 2j − 4)y2fj+2 + (n− j)x3yfj−(
4xy2

∂fj+2

∂x
+ 4y4

∂fj+1

∂x
+ 2x4

∂fj+1

∂y

)
= 0.

For m ≤ i ≤ n, let

fj =

j∑
ν=0

cj,νx
νyj−ν .
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Thus, (4.12) can be rewritten as

2(m− j−3)

(
j+3∑
ν1=0

cj+3,ν1x
ν1+1yj+3−ν1

)
+(α−2j−4)

(
j+2∑
ν2=0

cj+2,ν2x
ν2yj+4−ν2

)

+ (n− j)

(
j∑

ν3=0

cj,ν3x
ν3+3yj+1−ν3

)
− 4

(
j+2∑
ν4=0

ν4cj+2,ν4x
ν4+1yj+4−ν4

)

−4

(
j+1∑
ν5=1

ν5cj+1,ν5x
ν5−1yj+5−ν5

)
−2

(
j+1∑
ν6=0

(j + 1− ν6)cj+1,ν6x
ν6+4yj+1−ν6

)
= 0.

From now on we will assume that cj,ν = 0 when j < m, j > n, or m ≤ j ≤ n
but ν is less than 0 or greater j. Collecting the coefficients of xryj+4−r under each
summation sign we get

(4.13) 2(m− j − 3)cj+3,r−1 − (2j + 4r + 4− α)cj+2,r

− 4(r + 1)cj+1,r+1 − 2(j + 5− r)cj+1,r−4 + (n− j)cj,r−3 = 0,

where m − 1 ≤ r ≤ n + 3. Note that these are quadratic equations because α is
also a variable.

Theorem 4.5. The foliation G0 has no algebraic solutions.

Proof. As we have already pointed out, it follows from Theorem 3.1 that the line
at infinity z = 0 cannot be an algebraic solution of G0. Now, by Proposition 4.4, if
f ∈ C[x, y] is an algebraic solution of G0, then deg(f) ≤ 13. Moreover, f(0, 0) = 0
by [12, Proposition 4.1, p. 126]. By taking m = 1 and j = 0 when n = 1, the
system (4.13) reduces to

−4(r + 1)c1,r+1 − 2(5− r)c1,r−4 = 0

from which we get c1,0 = c1,1 = 0, because c1,−5 = c1,−4 = 0. Therefore, G0 does
not have any linear algebraic solutions. Similarly, to determine whether G0 has any
algebraic solutions, we have to solve one quadratic system for each pair (m,n) with
1 ≤ m < n ≤ 13. Using Axiom’s Gröbner Factorization Algorithm to do this, we
find that the only solution in each case is cj,ν = 0 for all choices of j and ν. �

Together with Theorem 3.3, this completes the proof of our main theorem.

Theorem 4.6. A very generic elements of the projective closure G of the family
G(a0, a1, a2, b0, b1) does not have any algebraic solutions.
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