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1. INTRODUCTION

The representation theory of D-modules over an algebraic variety has
been mostly concerned with a special class of modules, the holonomic
modules. A D-module is holonomic if it has maximal Gelfand—Kirillov
codimension, which is equal to the dimension of the base variety. The
interest in holonomic D-modules has two sources: their ubiquity and the
fact that their theory is extremely elegant.

However, if the base variety is not a curve, the D-module that corre-
sponds to a single differential equation is not holonomic. Thus the case of
one differential equation has not been in the main stream of the theory of
algebraic D-modules. In fact, until about 1983 it was widely believed that
all irreducible modules over the Wey! algebra were holonomic. The first
example of a non-holonomic D-module was given by Stafford [8]. In 1988
J. Bernstein and V. Lunts (1, 7] showed that, in fact, most modules over
the Weyl algebra that correspond to a single differential equation are
irreducible. Their idea was to use the geometry of the characteristic variety
to construct families of irreducible modules of Gelfand—Kirillov codimen-
sion one.

Let .#(X) be the category of all modules over the Weyl algebra with
characteristic variety X. It follows from the results of Bernstein and Lunts
that for a generic hypersurface X, the category .#(X) shares some of the
nice properties of the category of holonomic modules. Besides, since X is
a hypersurface, all the objects of .#(X) have Gelfand—Kirillov codimen-
sion one. In this paper we start a more detailed study of the structure of
the category .#(X), for a generic hypersurface X. Section 2 collects the
notation and basic facts used throughout the paper. In Section 3, we prove
that .#(X) has infinitely many non-isomorphic irreducible modules of
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every possible multiplicity. In Section 4 we show that Ext'(M, N) may be
an infinite dimensional vector space when M, N are objects in .#(X). This
should be compared with the holonomic case: Ext'(M, N) is always finite
dimensional when M, N are holonomic [2, 2.7.15 and 1.6.6]. Finally, these
results are used to construct families of projective non-cyclic ideals for the
Weyl algebra in Section 5. Indeed, we show that for most choices of
elements a, d in the Weyl algebra there exists a left ideal I(a, d) which is
projective and non-cyclic.

2. BASIC RESULTS

The nth complex Weyl algebra A, is the ring of differential operators of
affine space C". Its generators will be denoted by x,,...,x, and 4,..., g,
where J; is the differential operator d/dx,. From now on we shall fix the
integer n > 2, and write A instead of A4,.

The Bernstein filtration of A is defined by giving degree one to each of
the above generators. The graded ring of A with respect to the Bernstein
filtration will be denoted by S. We shall write A(k) for the kth step in this
filtration and S(k) = A(k)/A(k — 1) for the kth homogeneous compo-
nent of the graded ring S. The order ord(d) of an operator d in A is its
degree with respect to the Bernstein filtration. The symbol map of order k
is the canonical projection o,: A(k) — A(k)/A(k — 1) = S(k). Let y;, =
ofx)and y,., = o(9), for i = 1,2,...,n. Then S is a polynomial ring
on the variables y,,..., y,, over C.

The space C*" is a symplectic manifold with respect to the standard
2-form w = X}_,dy;, A dy,,,. To a function f € § we shall associate the
Hamiltonian vector field A, defined by

Z (af/ﬁyi-#n)dy, - (t?f/r?y,)o"”"
=1

The Poisson bracket of two functions f, g € § is defined as (f, g} = /,(g).
We may use the Poisson bracket to shadow the non-commutativity of A
within §. Let d,d" € A be two operators of order m and k, respectively,
then o, ,_,(d,d']) = {g,(d), o,(d")}. This is a very useful statement, as
we will see. An ideal J of S is said to be involutive if {J,J} < J. In this
case we also say that the variety Z(J)  C*" is involutive.

Let M be a finitely generated left A-module. Let F be a good filtration
for M with respect to the Bernstein filtration. Thus grM is a finitely
generated S-module. Such filtrations always exist because M is finitely
generated. The characteristic ideal (M) of M is the radical of the annihila-
tor of gr*M in S. It is independent of the choice of the good filtration F
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of M used to calculate it. The characteristic variety Ch(M) is the variety of
I(M) in C?". Notice that I(M) is a homogeneous ideal of S; in this case
we also say that Ch(M) is a homogeneous variety of C". Here is a simple,
but very important, example. Let L be a left ideal of 4 and put M = A/L.
Then I(M) is the radical of ¢ (L), where (L) = I o (L N A(k)).

The characteristic ideal of a finitely generated left A-module M is an
involutive ideal of S. This important result has been proved by Gabber in
[4], using purely algebraic methods. It has many useful applications. For
example, it implies that the dimension of Ch(M) cannot be less than »,
This is particularly important since dim Ch(M) coincides with the
Gelfand-Kirillov dimension of M. The involutivity of the characteristic
variety is also the key to the constructions of Bernstein and Lunts that we
now discuss.

A homogeneous involutive variety X of C*" is said to be minimal if it
does not contain any proper homogeneous involutive subvariety. Bernstein
and Lunts showed that if d is an operator of order k in A such that
Z(o,(d)) is minimal, then A /Ad is irreducible [1, Theorem A’]. They also
proved that most operators in A satisfy this property. To make this more
precise, we say that a property P holds for a generic f in S(k) if the set
{g & S(k). P does not hold for g} is contained in a countable union of
hypersurfaces in S(k). An often used, even if imprecise, shorthand for this
is to say that if f e S(k) is generic, then P holds. Now if kK > 4 and f is
generic in S(k), then Z(f) is a minimal homogeneous involutive variety.
This was proved for n =2 by Bernstein and Lunts in {1] and later
generalized to all n > 2 by Lunts in [7]. In fact, the result follows from
Theorem 1 of [7], which is stated below. First a definition. Let f € S(k);
the Hamiltonian vector field h, preserves a subvariety X C C* if it is
tangent to X at every smooth point of X.

THEOREM 2.1. Let k > 4 be an integer and let f be a generic element of
S(k). If X is a homogeneous subvariety of Z(f) preserved by h, then
dim(X) < 1.

The following consequence of Theorem 2.1 is also central to the results
in this paper.

LEMMA 2.2, Letk = 4, m > 1, and P € 5(k) be a generic polynomial. If
Q € S(m) satisfies (Q, P} €S- P + S Q, then Q is a multiple of P.

Proof. Let J =S-P + §-Q. Then the hypothesis implies that {J, P} C
J. Denote by £ the hamiltonian operator #,. Then 4 is a derivation in S.
We show that Ah(rad(J)) C rad(J). If f € rad(J), then there exists a
positive integer p such that f? € J. Since A(J) C J, it follows that A7(f7)
€ J. A straightforward calculation shows that p!(hA(f)? € rad(J). Thus
h(f) € rad(J). We conclude that A(rad(J/)) C rad(J), as required. But this
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implies that the subvariety Y = Z(J) ¢ Z(P) is preserved by h. Since P is
generic, we conclude that dim ¥ < 1. But height(J) < 2, hence dim(Y) >
2n — 2 > 2, whenever n > 2; contradicting Theorem 2.1.

We also use the multiplicity of an A-module. Let M be a finitely
generated left A-module with a good filtration F and P a prime ideal of
S. The multiplicity mp(M) of M with respect to P is the length of the
Sp-module (gr*M),. The multiplicity thus defined is independent of the
good filtration F used to calculate it and is additive over short exact
sequences of A-modules. The multiplicity also satisfies the following
property: mp(M) is finite and non-zero if and only if M # 0 and P is a
prime ideal minimal over /(M). For details see [5, Corollary 1.3; 1; 6].

We may now define the main object of study in this paper. Let & = 4,
and f & S(k) be a generic polynomial. Denote by .#(f) the full subcate-
gory of all finitely generated left A-modules M such that Ch{M) = Z(f).
This category is closed under submodules, quotients, and extensions. If P
is the prime ideal of § generated by f, and if M is an object of .#(f), set
m(M) = mp(M). This will be called the multiplicity of M. The length of
an object M in .#(f) is bounded above by its multiplicity m(M) which is
always finite. These are properties that .#(f) shares with the category of
holonomic modules. However, if M is an object in .#(f) then d(M) =
dim(Z(f)) = 2n — 1. Hence M has codimension one, and cannot be
holonomic.

We end this section with a very useful division lemma. If d € 4 is an
operator of order k, put o(d) = o,(d). This is called the principal symbol
of d.

LEMMA 2.3. Leta,d € A. Then either a € Ad, or there exists g € A such
that o(d) does not divide o(a — q - d).

Proof. If o(d) does not divide o(a) there is nothing to do. Suppose
that o(d) divides o(a), but that a & Ad. Then there exists q, € 4 such
that o(a) = 0(q)) - o(d). Hence ord(a — g, - d) < ord(a). By induction,
there exists g, € 4, such that o(a — (g, + ¢,) - d) is not divisible by
o (d). The result follows if we set g = g, + ¢,.

3. IRREDUCIBLE MODULES

Let X = 4 be an integer and P € S(k) be a generic polynomial, which
will be kept fixed throughout this section. In Section 2 we saw that if
d € A satisfies o(d) = P, then A /Ad is irreducible. We now show that
this construction yields infinitely many irreducible objects in .Z(P).



106 S. C. COUTINHO

THEOREM 3.1. Let d,d’ be two distinct elements of A both with principal
symbol P. Then the irreducible modules A /Ad and A/Ad' are not isomor-
phic.

Proof. The proof is by contradiction. Assume that there exists an
isomorphism ¢: A/Ad — A/Ad’. Since A/Ad is irreducible, it is gener-
ated by 1 + Ad. Thus the isomorphism is completely determined by the
image of this element, say ¢(1 + Ad) = a + Ad’. By Lemma 2.3, we may
assume that P = ¢,(d’) does not divide g(a). Note also that one must
have a & C, since d # d'.

Since ¢p(Ad) € Ad’', we must have d-a = b -d’, for some b € A. From
o,(d) = o,(d") it follows that d' = d + h, for some h € A(k — 1). We end
up with the equation

d-a=b-(d+h). (3.2)

Notice that a and b must have the same order, say ord(d) = ord(a) = m.
Then taking symbols of order m + k on both sides of Eq. (3.2) we get
o(d)-a,(a) = o(d) - 0,b). Hence o,(a) = g,(b), and a = b + ¢, for
some ¢ € A(m — 1). Substituting this into Eq. (3.2), one has d - (b + ¢) =
b - (d + h), which can be written in the form

[d,b]=b-h—d-c. (3.3)

The left hand side of (3.3) has order less than or equal to m + k — 2,
while the right hand side has order at most m + k — 1. Suppose that
ord(c) = m — 1. Taking symbols of order m +k — 1 in (3.3), we get
a,(b)-a,_(h) = o,(d) a,_(c). But o,(d) = P is generic, therefore ir-
reducible; hence it must divide either a,,(b) or o, _ (k). Neither of these is
possible: o, (b) = a,(a) is not divisible by P by hypothesis, and a,_ (1)
has smaller degree than P. Therefore we must have ord(c) <m — 2.
Consequently, ord(h) < k — 2. Now, taking symbols of order m + k — 2 in
(3.3), we have

m+k72([d’b]) = m(b) ' Uk»Z(h) - Uk(d) ’ a-m—l(c)'

a,

This equation is equivalent to

(P,a,(b)} = a,(b) - 0, 3(h) = P-a, ,(c).
By Lemma 2.2, the last equation implies that P divides a,(b) = g,(a), a
contradiction.

Of course all these modules have multiplicity one. We now show that
#(P) contains irreducible modules of multiplicity m for every m > 1.



MODULES OF CODIMENSION ONE 107

PROPOSITION 3.4. Suppose that Q € S(mk — 1) is not divisible by P.
Choosed, b € A suchthat o(d) = Pand o (b) = Q. The left ideal A(d™ + b)

is maximal in A.

Proof. Suppose not, and let J be a proper left ideal of A such that
A(d™ + b) c J. Notice that because Z(P) is a minimal involutive homoge-
neous variety, we must have that o(J} C SP. Since m(A/A(d™ + b)) = m,
one has that s = m(A/J) <m — 1. Hence J contains an element of the
form ad’ + ¢, where a has order r, ¢ has order < sk + r — 1, and P does
not divide o(a). The element g defined by

g=d" *(ad’ +c) —a(d™ + b) =[d" *,a]-d* +d™ *c — ab

is contained in J. But [d™ ¢, a] -d* has order < mk + r — 2, while both
d™ *c and ab have order < mk + r — 1. Hence g has order < mk + r —
1. Taking symbols of this order, one concludes that o, ,,_,(d"™ *c — ab)
belongs to (J) < SP. But

(’;nk-i—r‘l(dm_sc - ab) = a'k(d)m_j : arvk+r~l(c) - O-r(a) . amk—l(b)'

Since the left hand side is divisible by P, and o (d) = P, it follows that P
divides a.(a) - a,,_,(b). Since P is irreducible, it must divide one or other
of these factors, a contradiction.

COROLLARY 3.5. Suppose that Q € S(mk — 1) is not divisible by P.
Choose d, b € A such that o(d) = P and o(b) = Q. The module M =
A/A(d™ + b) is irreducible of multiplicity m.

We now show that the construction of Corollary 3.5 produces an infinite
family of irreducible modules of multiplicity m.

PROPOSITION 3.6. Suppose that d € A satisfies o(d) = P™. If b is an
element of A of order mk — 1 whose principal symbol is not divisible by P then
A /Ad is not isomorphic to A /A(d + b).

Proof. The proof is by contradiction. Suppose that ¢: A/Ad — A/A(d
+ b) is an isomorphism. Let ¢(1 + Ad) = a + A(d + b). Clearly a & C;
and we may also assume that P™ does not divide o(a), by Lemma 2.3.
Hence there exists ¢ € A such that d-a = ¢(d + b). Suppose that a has
order r. Then ¢ too must have order r, and taking symbols one concludes
that o.(a) = g,(c). Thus we may write a = ¢ + ¢’, where ¢’ has order < r.
Hence d(c + ¢') = da = ¢(d + b}, which is equivalent to

[dic] =cb —dc'. 3.7
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The order of the left hand side of this equation is at most mk + r — 2. On
the other hand the term ¢b in the right hand side has order mk + r — 1
and taking symbols of this order in (3.7), one has that

0= 0,(¢) 0 1(b) = g (d) o, (c').
Thus P = g,,,(d) divides g,(c)a,,,_,(b). Since P is irreducible and does
not divide g, _ (b), it must follow that P™ divides o,(c), a contradiction.

The contents of Propositions 3.4 and 3.6 are neatly summed up in the
statement of the following theorem.

THEOREM 3.8. Let m be a positive integer. The category #(P) contains
infinitely many non-isomorphic irreducible objects of multiplicity m.

4. EXTENSIONS

In this section we calculate the first extension groups for some irre-
ducible modules in .#(P). As in the previous section, & > 4 is an integer
and P € S(k) is a generic polynomial. We begin with a review of some
basic facts about Ext-groups.

Let d € A, and J be a left ideal of A. Consider the exact sequence of
A-modules

0—>Ad »A—A/Ad — 0.
Applying Hom(-, A /J) to it we get the long exact sequence
0 —» Hom(A/Ad, A/J) - Hom( A, A/J) —» Hom( Ad, A/J)
— Ext'(A/Ad, A/T) — 0.
Since Hom( A, A/J) = Hom(Ad, A/J) = A/J, the last three terms of this
sequence become
AsS A - Ext'(A/Ad, A/J) — 0,

where ¢ is the map ¢(a +J) =d-a +J. Hence the isomorphism of
vector spaces:

Ext'(A/Ad, A/J) = Coker(¢) =A/(J +d-A).

THEOREM 4.1. Letd,d' € A be such that o(d) = o,(d') = P. Then the
vector space Ext'(A/Ad, A/Ad") has dimension greater than or equal to

5y = (0577,
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Proof. According to the calculations that precede this theorem, it is
enough to show that the dimension of the vector space A/(Ad’' + dA) is
greater than or equal to &(k). But 6(k) = dimg A(k — 3). Thus the
theorem will follow if we show that

A(k =3) N (Ad' +dA) = 0.
The proof is by contradiction. Suppose that b € A(k — 3), and that
b=a-d +d-a (4.2)

for some a,a’ € A. Without loss of generality we may assume that
ord(a) = m > ord(a’) and that P = o,(d’) does not divide o(a). The last
assertion follows from Lemma 2.3.

Taking symbols of order m + & in (4.2), we get

Opik(b) = 0,(a") - o (d") + 0y (d) - 7,(a).

Since ord(b) < k — 3 < k + m, we have that o, () = 0. But o,(d) =
o (d"); thus ord(a) = ord(a’), and o,(a) = — ¢, (a’). Hence @' = —a + ¢,
for some ¢ € A(m — 1), and d’ = d + h for some A € A(k — 1). Substi-
tuting in Eq. (4.2), one has b = (—a + ¢)-(d + h) + d - a. Equivalently,

b=[d,a]l+ (c-d’" —a-h). (4.3)

Since ord([d, al) < m + k — 2, it follows by taking symbols of order m + k
— 1 in (4.3), that

0=0,_(c) o(d') + g,(a) o,(h).

But o, (d') = P is a generic polynomial, hence irreducible. Thus P must
divide either g,,(a) or o, _ (h). However, o, _,(h) has smaller degree than
P, and P does not divide o, (a) by hypothesis. Hence ord(c) < m — 2 and
ord(h) < k - 2.

Finally, taking symbols of order m + k — 2 in (4.3), we get

0={P.g,(a)} + 0, 5(c) P+ g,(a) op_,(h)

which, by Lemma 2.2, implies that P divides o,,(a), a contradiction.

Theorem 4.1 may be improved when d = d’. In this case we show that
the dimension of Ext'(A4/A4d, A/Ad) is actually infinite. The proof is
similar, but technically more elaborate. We begin with a lemma.

LEMMA 4.4. Let V(1) = (S(¢), P} + S(t — 2)- P. Then V(t) is a vector
subspace of S(t + k — 2) and, for large t, dim V(¢) < dim S(t + k — 2).
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Proof. Consider the map ¢: S(1) & S(z — 2) — S(r + k — 2), defined
by &(f, g) = hp(f) + gP. This is clearly a C-vector space homomorphism,
and its image is V(). If (f, g) € Ker(¢), then {P, f} = —gP. By Lemma
2.2 it follows that f is a multiple of P. Hence Ker(#) = S(t — k).

We assume that there exists an infinite set | € Z such that V() =
S(t + k — 2) for all + € I, and aim at a contradiction. If 1 € {, we have an
exact sequence

0->S(t—k)y-8S)eS(t—2)>S(r+k—-2)—>0.

Let p(t) = dimS8(¢). This is a polynomial function of ¢. Since dimension
is additive on exact sequences, we have that

p(t)y +p(t=2) =p(t —k) +p(t +k - 2)

for all t €. Put g(¢) = p(¢) — p(t — k). The above equation may be
rewritten as g(t) = g(¢ + k ~ 2). Since ¢(t) is a polynomial, this can only
hold for infinitely many values of ¢ if g(¢) is identically zero. Hence
p(t) = p(t — k) holds for all ¢. Thus p(¢) must also be identically zero, a
contradiction. We conclude that there exists some positive integer N such
that V(¢) is a proper subspace of S(¢ + k — 2) for all ¢+ > N.

THEOREM 4.5. If d € A(k) satisfies o,(d) = P, then the vector space
Ext'(A/Ad, A/Ad) is infinite dimensional.

Proof. Let m be an integer. By Lemma 4.4, there exists N > 0 so that
Sm)\V(im — k + 2) # &, whenever m > N. We have seen that
Ext'(A/Ad, A/Ad) = A/(Ad + dA); thus to prove the theorem it is
enough to show that if b € A(m) and o¢,(b) € S(m) \ V(m — k + 2),
then b & Ad + dA.

We prove this last statement by contradiction. Without loss of general-
ity, let m > k. Suppose that

b=a-d+d-a, (4.6)

for some a,a’ € A. We may assume, by Lemma 2.3, that P = o, (d) does
not divide o(a). Let max = max{ord(ad), ord(da’)}. Clearly max > ord(b).

Assume first that max = ord(b) and that ord(a) = ord(a’). Then
ord(a) = m — k. Applying symbols of order m to (4.6), one has

o.(b) = 0,_(a) o (d) + o (d) -0, _(a).

Hence o,(b) € S(m — k)P Cc V(m — k + 2), which contradicts the
choice of b. We arrive at a similar conclusion if ord(a’) > ord(a).

Suppose next that max > ord(b). Let ord(a) = t. If ord(a) > ord(a’),
then applying symbols of order k + ¢ in (4.6), one has

0=o0,(a-d+d-a') =0y, (ad)=0(d) ofa)
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which is not possible. Similar results apply if ord(a’) > ord(a). Therefore,
one must have ¢ = ord(a) = ord(a’). Once again

O0=0(a-d+d-a)=o0(a) a,(d)+ o,(d) o(a').

Thus o,(a) = —o,(a’), and we may write a’ = —a + ¢, for some ¢ €
A(t — 1). Substituting in (4.6), one obtains

b=[a,d]+d-c. (4.7)
But ord({a,d]) < k +t — 2. If ord(¢c) =t — 1, then
Uk+l—](b) = U'kﬂfl(d'c) = Uk(d) ’ Ul‘](c)'

If o4.,_,(b) # 0, then we have a contradiction with the choice of b; on
the other hand, if the symbol is zero, then it implies that o,_,(c) = 0,
contradicting ord(c) =+ — 1. Hence ord(c) <r —2, and ord(b) <k +
r—2.

Applying symbols of order k + ¢t — 2 in (4.7), we get

Ori-2(b) = 0p,,_o(la,d]) + a,_5(c) - o, (d)
which is equivalent to
Oi-2(b) = {a(a), P} + 0,_5(c) - P. (4.8)

If ord(b) < k + t — 2, then (4.8) implies that {o,(a), P} = —o,_,(c) - P. By
Lemma 2.2 it follows that P divides o,(a), which is not possible. Hence we
must have that ord(b) = k& + ¢ — 2. In this case t = m — k + 2, and we get
that a,(b) = {0,,_;,{a), P} + a,,_(c)- P € V(m — k + 2), a contradic-
tion.

5. IDEALS AND REALITIES

In this section we collect a few miscellaneous results related to those
proved in the previous section. First of all let us consider the relation
between modules in .#(P) and projective ideals of A4. This is detailed in
the next proposition.

ProPOSITION 5.1.  If [ is a projective left ideal of A, then the module A /I
has dimension 2n — 1. On the other hand, if P € S(k) is a generic polyno-
mial and if M is an object in #(P), then M = A /], where ] is a projective left
ideal of A.

Proof. If I is a proper projective left ideal of A then the short exact
sequence 0 — [ > A — A /I — 0is a projective resolution for A /1. Hence
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j(A/D) = min{j: Ext/(A/I, A) # 0} = 1. But from [3, V.2.2.2] we have
that j(A/I) + d(A/I) = 2n. Thus d(A/I) = 2n — 1.

Suppose now that M is a module in .#(P). Since M has finite multiplic-
ity, it must have finite length; hence M is cyclic by [2, 1.8.18]. Thus there
exists an ideal J of A such that M = A /J. But from [1, Proposition 5], we
have that Ext/(M, A) = 0 for j # 1. Thus J must be projective.

We now show how Theorem 3.1 can be used to construct projective
non-cyclic ideals of A. This follows an idea of Stafford in [9].

THEOREM 5.2. Let k = 4 be an integer and d € A(k) be such that
o(d) € S(k) is a generic polynomial. If a € A\ (C + A -d), then the left
ideal (a,d) = {x € A: x -a € A -d} is a non-cyclic projective left ideal of A.

Proof. By definition, I = I(a, d) is the kernel of the map

¢b: A > A/Ad
x—>x-a+ Ad.

Thus A/I = A/Ad. By Proposition 5.1, I is a projective left ideal. We
must prove that I is not cyclic.

Suppose, by contradiction, that I is cyclic. Then I = A -c, for some
c € A. Since Ch(A /I) = Z(o(c)) and Ch( A /Ad) = Z(o(d)) are equal, it
follows that rad(o(c)) = (o(d)). Comparing multiplicities, we have that
1 =m(A/Ad) = m(A/I). This implies that ¢ =d + h, for some h €
A(k — 1). By Theorem 3.1, the isomorphism above cannot hold if 7 # 0.
Hence ¢ = d, and ¢ is an endomorphism of A4 /Ad. By Quillen’s Lemma,
we must have that a € C + A - d, a contradiction.

This theorem has a geometrical interpretation, as follows. Let &, m be
positive integers. The set A(m) X S(k) has a natural structure of affine
space. According to Theorem 5.2, if (a, P) is generic in A(m) % S(k) and
o(d) = P, then the left ideal I(a, d) is projective and non-cyclic. Contrast
this with the result of Bernstein and Lunts: if P is generic in S(k) and
o(d) = P, then any left ideal that contains d is cyclic.

In Section 4 we calculated Ext-groups of modules in .#(P); in the next
theorem we consider Ext'(M, N) when M and N have different charac-
teristic varieties and show that it must have infinite dimension. The proof
depends on a technical lemma.

LEMMA 5.3. Let P € S(k) and Q € S(m). If m, k > 0 are integers, then
for large enough t, dimg(S(t — k) - P + S(t — m) - Q) < dim(S(1)).

The proof follows the general argument of Lemma 4.4 and shall be
omitted.
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THEOREM 5.4. Let m,k > 4 be integers and d,d’ € A be such that
o(d) € S(k) and o(d') € S(m) are irreducible polynomials. The vector
space Ext'(A4 /Ad, A/Ad") is infinite dimensional.

Proof. Recall that Ext(A/Ad, A/Ad’) = A/(A-d + d-A). By
Lemma 5.3, there exists N > 0, such that for all + > N, we have S(¢)\
(St — k) o (d) + S(t —m)-g,(d")) # &. Choose h € A(t), such that
agl(h) € S(HO\ (St ~ k) - o (d) + S(t — m) - g,(d")). It is enough to show
that h & Ad' + dA.

Suppose, by contradiction, that

h=ad +da (5.5)

for some a,a’ € A. By Lemma 2.3 we may assume that o(d) does not
divide a(a'). If ord(a’d’) < ord(da) = s and s > ¢, then taking symbols of
order s in (5.5), one gets g,(d)- o, ,(a) =0, a contradiction. Similar
results apply if ord(da) < ord(a’'d’), and ord(a’d’) > ¢.

If ord(da) = ord(a’d’) > ¢, then applying symbols of order s again, one
has

0= o-k(d) ’ o-s-k(a) + U.m(d’) : o:v—m(a’)'

Since o, (d) is irreducible, we conclude that it must divide o,(d’) or
g,_,(a’), both of which contradict the hypotheses.

We are left with the possibility that max{ord(da), ord(a’d")} = ¢. Then
taking symbols of order ¢ one obtains

o,(h) = o (d)o,_(a) + g,(d") - 0,_,(a')

which, once again, contradicts the choice of A, thus proving the theorem.

We end with a question. As usual, let & > 4 be an integer, and P € S(k)
be a generic polynomial.

Problem 5.6.  Are all irreducible objects of multiplicity 1 in .#(P) of the
form A/Ad, for some d € A with o(d) = P?
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