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Catching Tangent Curves in Fields of Lines
S. C. Coutinho

Abstract. In 1878 Gaston Darboux published a method for finding first integrals of differen-
tial systems with polynomial coefficients. Combined with tools from algebraic geometry and
computer algebra, Darboux’s method has opened up a vast field of work that is still being
actively pursued. In this article, we introduce some of the key ideas and problems in this area.

1. INTRODUCTION. For the mathematicians of the 18th century, to solve an ordi-
nary differential equation meant to express its solutions in analytic form. It is a testa-
ment to the fruitfulness of their methods that, to this day, our first courses on differen-
tial equations are still based on them. As Morris Kline points out in [31, p. 476] “[a]ll
the elementary methods of solving first order equations were known by 1740.” This
includes separation of variables, which was discovered by James Bernoulli, and inte-
grating factors, introduced independently by L. Euler and A. C. Clairaut. By the end of
the 18th century, several equations of higher order had also been conquered. Among
them are linear differential equations with constant coefficients, tackled by Euler in
1743.

Although, by the end of the 19th century, interest in the analytic solution of dif-
ferential equations was waning, this did not stop G. Darboux from introducing a new
method that would lead to a line of research that is still very much active today. Dar-
boux’s starting point was A. Clebsch’s observation that “every differential equation
of the first order establishes a relation between a point of the curve that satisfies the
equation and its tangent at this point.” [14, p. 60] This relation was stated using the
language of projective geometry, a field that had been developing quickly since its
introduction by Poncelet at the beginning of the century.

Although Darboux’s paper did not immediately attract much attention, its impor-
tance was recognized by Poincaré, among others. As a result, the Académie des Sci-
ences proposed, as the theme for its Grand Prix des Sciences Mathématiques for 1890,
to “perfect in an important point the theory of differential equations of the first or-
der and the first degree” [23, p. 1050]. The committee that analyzed the entries was
composed by Hermite, Jordan, Poincaré, Darboux, and Picard, and the prize went to
P. Painlevé, with L. Autonne receiving an honorable mention. The prize also had the
effect of piquing Poincaré’s interest in the area, in which he would eventually publish
two important papers, [35] and [36], with exactly the same title. As we will see in
Section 5, Poincaré begins the first of these papers with a problem that is still open,
and that has played a key role in keeping interest alive in Darboux’s ideas and methods
throughout the second half of the 20th century and into our own days.

In the second paragraph of the same paper [35, p. 193], Poincaré refers to this
work of Darboux as “l’oeuvre magistrale de M. Darboux.” Similarly, Painléve in his
1895 Stockholm lectures on analytic differential equations, calls the same paper “une
mémoire magistral.” [33, p. 217] The high regard in which Darboux’s paper was held
is also shown by the fact that his method for finding first integrals made its way into
such classic books as Ince’s Ordinary Differential Equations [26, p. 19] and Jordan’s
Cours d’Analyse [28, pp. 27–37].

However, by the middle of the twentieth century, the study of ordinary differential
equations had undergone a shift away from symbolic methods of solution, in part be-
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cause it became clear that very few equations could be solved symbolically. Thus, ap-
plied mathematicians tended to solve equations using numerical methods, while pure
mathematicians investigated the behavior of solutions using the qualitative methods
that had also been pioneered by Poincaré.

The tide began to turn back with the advent of computer algebra in the 1970s and
the realization that integration in elementary terms could be done algorithmically [39].
Thus, by 1983 M. J. Prelle and M. F. Singer had proposed an algorithm [38] to compute
elementary first integrals of differential equations with polynomial coefficients that
is heavily dependent on the ideas introduced by Darboux. However, although Prelle
and Singer cite the papers of Poincaré and Painlevé mentioned above, they make no
reference to Darboux at all. Indeed, most mathematicians who learned these techniques
after 1979 did so through J.-P. Jouanolou’s monograph [29], where Darboux’s results
are reworked in the language of modern algebraic geometry. Jouanolou’s work also
had a huge impact in the study of holomorphic foliations, which were eventually used
in the development of algorithms for the symbolic solution of differential equations;
see, for instance [13, 19, 21].

The aim of this article is to give an exposition of some of the results and techniques
that have been developed in the wake of Darboux’s “mémoire magistral.” After de-
scribing the Darboux–Jouanolou method of finding rational first integrals of ordinary
differential equations of the first order, we explain its relation to a problem proposed
by Poincaré in [35, p. 193]. Although this is still an open problem, several partial
solutions have been proposed, one of which is presented in Section 5.

Since Darboux’s work was an early application of projective geometry to the study
of differential equations, we begin with a brief review of the results of projective alge-
braic geometry that will be required throughout the paper.

2. PROJECTIVE ALGEBRAIC GEOMETRY. The birth of projective geometry
as a mathematical discipline can be traced to J.-V. Poncelet’s Traité des propriétés
projectives des figures [37], published in 1822. Although Poncelet had envisaged his
methods as promoting a revival of the synthetic geometry of the ancients, as opposed
to the analytical geometry of the moderns, mathematicians were quick to introduce
coordinates in the study of projective spaces. Poncelet’s Traité was mostly concerned
with lines and conics, but by the time J. Plücker published his System der analytischen
Geometrie in 1835, the use of coordinates had put algebraic curves of higher degree
within reach of the methods of projective geometry. Since our interest is in algebraic
curves, the short review of projective geometry provided in this section will be emi-
nently analytic.

From this point of view, it is best to define the complex projective plane P2 as
the quotient set of C3 \ {(0, 0, 0)} by the equivalence relation that identifies any two
points that belong to the same line through the origin. If v = (x0, y0, z0) is a nonzero
complex vector, its equivalence class under this relation will be denoted by [v] = [x0 :
y0 : z0]; the numbers x0, y0 and z0 are the homogeneous coordinates of the point
[v] ∈ P2. Note that the homogeneous coordinates of a point are not unique. Indeed, if
λ is a nonzero complex number, then

[v] = [x0 : y0 : z0] = [λx0 : λy0 : λz0] = [λv], (1)

because v and λv define the same line through the origin of C3. The set L∞ of points
of P2 whose z-coordinate is zero is called the line at infinity.

Using homogeneous coordinates, a bijective map ε from U = P2 \ L∞ to C2 can
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be defined by the rule

ε([x0 : y0 : z0]) =

(
x0

z0
,
y0
z0

)
. (2)

We can use ε−1 to map the points of an algebraic curve Γ of C2 into U ⊂ P2. But first,
we need a definition. If φ ∈ C[x, y] has total degree d, then its homogenization is the
homogeneous polynomial of degree d in C[x, y, z] defined by

Φ(x, y, z) = zdφ
(x
z
,
y

z

)
. (3)

As a rule, we will use lowercase letters for polynomials in C[x, y] and the correspond-
ing uppercase letters to denote their homogenizations. Assuming that Γ is the set of
points where the nonconstant polynomial φ ∈ C[x, y] vanishes, ε−1(Γ) is the set of
points in P2 \ L∞ where Φ vanishes. However, it is more convenient to work with
the projectivization Γ = {[v] ∈ P2 |Φ(v) = 0} of Γ, which includes ε−1(Γ) and the
points at the line at infinity where Φ vanishes.

There are several reasons why it is preferable to work with Γ rather than the curve
Γ. The most obvious is that it allows mathematicians to justify the aphorism parallel
lines meet at infinity. A deeper reason why the projectivization is to be preferred is
that, unlike ε−1(Γ), the set Γ is both closed and compact with respect to the quotient
topology of P2; see [30, pp. 34–40]

Actually, there is no reason to think of algebraic curves in P2 as projectivizations
of curves in C2. Therefore, from now on, we take an algebraic curve of P2 to be a set
of points of the form Γ = {[v] ∈ P2 |Φ(v) = 0}, for some square-free homogeneous
polynomial Φ ∈ C[x, y, z]. When Φ is irreducible, we say that Γ is irreducible. The
degree of an algebraic curve Γ, which we denote by deg(Γ), is the degree of the
square-free polynomial whose vanishing defines Γ. We finish this section with what is
probably the best known result in the theory of algebraic curves.

Bézout’s Theorem. If Γ1 and Γ2 are distinct irreducible projective algebraic curves,
then Γ1 ∩ Γ2 is a nonempty set of at most deg(Γ1) deg(Γ2) points.

The theorem takes its name from E. Bézout, who published a proof in his Théorie
générale des équations algébriques, see [1, p. xii]. However, the result had already
been conjectured by C. Maclaurin and a proof had unsuccessfully been attempted by
Euler; see [15, p. 6] for more details on the history of this result. Moreover, by our
standards, Bézout’s proof is far from satisfactory; a modern proof based on the same
ideas already used by Bézout can be found in [30, pp. 51–62].

3. DARBOUX’S GEOMETRICAL APPROACH. In Leibniz’s approach to calcu-
lus, differential equations of the first order appeared as a tool to solve tangent prob-
lems; see [24, p. 242]. Such problems can be conveniently stated in terms of line fields,
also known as direction fields. A line field is a map F that takes a point p of an open
set of C2 to a line F(p) that contains p. The corresponding tangent problem can then
be stated as: find a curve that is tangent to F at all of its points.

In particular, F is a polynomial line field if there exist polynomials a, b ∈ C[x, y, z]
such that the line F(p), associated with a point p = (u0, v0) ∈ C2 by F, has the form

a(p)(x− u0) + b(p)(y − v0) = a(p)x+ b(p)y − c(p) = 0, (4)

where c = xa+ yb. Note that the same line field is defined by the equation obtained
multiplying (4) by a nonzero complex number. This suggests that it is best to describe
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F as the map from C2 to P2 given by F(p) = [a(p) : b(p) : −c(p))] with one caveat:
a and b cannot both be zero at the same point, otherwise we do not have a well-defined
line. Throughout this article all line fields will be polynomial.

In his 1878 paper, Darboux went one step further and defined a line field on the pro-
jective plane itself. Let A,B,C ∈ C[x, y, z] be homogeneous polynomials of degree
k ≥ 1 and set F([q]) = [A(q) : B(q) : C(q)]. Since

[A(λq) : B(λq) : C(λq)] = [λkA(q) : λkB(q) : λkC(q)] = [A(q) : B(q) : C(q)],

it follows that F([λq]) = F([q]). Thus, F(p) is a well-defined map as long as A,
B, and C do not vanish simultaneously at p. As in the previous paragraph, we will
identify the point [A(q) : B(q) : C(q)] with the line A(q)x+B(q)y + C(q)z = 0.
Moreover, since we expect this line to pass through q = [x0 : y0 : z0], we also need
to assume that A(q)x0 + B(q)y0 + C(q)z0 = 0, for all q ∈ P2. This implies that
xA(x, y, z) + yB(x, y, z) + zC(x, y, z) is the zero polynomial.

Summing up, we have the following definition. A line field F of P2 is a map

F([x : y : z]) = [A(x, y, z) : B(x, y, z) : C(x, y, z)], (5)

where A,B,C ∈ C[x, y, z] are homogeneous polynomials of degree k ≥ 1 that sat-
isfy xA + yB + zC = 0. We say that F is singular at q ∈ P2 if A(q) = B(q) =
C(q) = 0 and we denote by Sing(F) the set of all these points. Thus, the domain
of F is P2 \ Sing(F). It follows from Bézout’s theorem that Sing(F) is finite if
gcd(A,B,C) = 1. It is also true that all line fields of P2 have singular points; see
[42, Proposition 10.2, p. 393].

Darboux realized that using the relation xA+ yB + zC = 0 one can parameterize
A,B, andC in terms of polynomials of degree k − 1. In order to do this we collect the
terms that are divisible by x inB andC, writingB = xN +R, andC = −xM + S,
with R,S ∈ C[y, z]. Substituting these in xA+ yB + zC = 0, we obtain

x(A+ yN − zM) + yR+ zS = 0.

But x does not divide yR + zS unless A = −yN + zM and yR = −zS. Thus, R
must be a multiple of z. Writing R = −zL, we get S = yL, so that

A = −yN + zM, B = xN − zL, and C = −xM + yL, (6)

whereL,M , andN are homogeneous polynomials of degree k − 1. The integer k − 1
is the degree of the line field F.

This way of writing the entries of F is very helpful in the study of its algebraic
solutions, which are the irreducible algebraic curves of P2 that are tangent to F at all
of its points. Let Γ be such a curve and assume that it is defined by the vanishing of a
nonconstant irreducible homogeneous polynomial Φ ∈ C[x, y, z] of degree deg(Φ) =
m ≥ 1. Now F is tangent to Γ at a point q ∈ Γ if ∇Φ(q) and F(q) are collinear at q,
which is equivalent to the vanishing of all the 2× 2 minors of the matrix[

A B C
∂x(Φ) ∂y(Φ) ∂z(Φ)

]
=

[
zM − yN xN − zL yL− xM
∂x(Φ) ∂y(Φ) ∂z(Φ)

]
for all q ∈ Γ. Adding M + L + N times the Euler identity x∂x(Φ) + y∂y(Φ) +
z∂z(Φ) = mΦ to the sum

(B∂x(Φ)−A∂y(Φ)) + (C∂y(Φ)−B∂z(Φ)) + (A∂z(Φ)− C∂x(Φ)) = 0
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of the three minors, we find that

−(x+ y + z)(L∂x(Φ) +M∂y(Φ) +N∂z(Φ)) = m(M + L+N)Φ.

If M + L + N is a multiple of x + y + z, then DF(Φ) = GΦ, for some homoge-
neous polynomial G, where

DF = L∂x +M∂y +N∂z. (7)

Otherwise, the fact that Φ is irreducible implies that, up to a constant multiple, Φ =
x + y + z. Then, from the vanishing of the minor B∂x(Φ) − A∂y(Φ) = N(x +
y + z) − z(M + L + N), we deduce that x + y + z divides M + L + N . Thus,
DF(Φ) = GΦ also holds in this case. Summing up, we have the following result.

Proposition 1. The algebraic curve Γ, defined by the vanishing of the nonconstant
homogeneous irreducible polynomial Φ ∈ C[x, y, z] is an algebraic solution of F if
and only if DF(Φ) = GΦ for some homogeneous polynomial G ∈ C[x, y, z].

As usual we drop the subscript F and write simply D whenever the line field is
clear from the context. The polynomial G in Proposition 1 is called the cofactor of Φ.
Note that if Φ has degree d, then the degree of DF(Φ) is deg(F) + d− 1, while that
of GΦ is deg(G) + d, so DF(Φ) = GΦ implies that

deg(G) = deg(F)− 1. (8)

Before we move on, we will determine the lines of P2 that are algebraic solutions
of a line field of degree one, an example that was originally studied by C. G. J. Jacobi
in [27]; see also [14, p. 70] and [29, pp. 8–19]. In this case L, M , N , as well as the
polynomial F that defines the algebraic solution, are all linear; so we can write

[L M N ] = [x y z]︸ ︷︷ ︸
u

a11 a12 a13
a21 a22 a23
a31 a32 a33


︸ ︷︷ ︸

A

and Φ = [x y z]︸ ︷︷ ︸
u

αβ
γ


︸︷︷︸
v

, (9)

where A and v are matrices with coefficients in C. Now it follows from (8) that G =
λ ∈ C when deg(F) = 1. Thus, in this case,DF(Φ) = GΦ is equivalent to Av = λv.
Therefore, the line of P2 defined by the polynomial Φ = uv is an algebraic solution
of F if and only if v is an eigenvector of A. In particular, line field of degree one has
at least one and at most three algebraic solutions of degree one. For example, the line
field

F0(x, y, z) = [2z − 4y + 14x : 8z + 11y + 2x : 11z + 5y − 4x]

has the two solutions f1 = 2z − y + 2x and f2 = 2z + 2y − x. Figure 1 illustrates
this line field and its linear solutions at the points with real coordinates in the set
U = {[x : y : z] ∈ P2 | z 6= 0}. The line field is represented by the direction vectors
of the corresponding lines.

However, Jouanolou showed in [29, Théoreme 1.1, p. 158] that, in strong contrast
to this, most line fields of P2 of degree greater than one have no algebraic solution. We
end with a result that will be used at the beginning of the next section.
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Figure 1. The line field F0 and its linear algebraic solutions.

Lemma 2. Let F be a line field and let Φ, G ∈ C[x, y, z] be homogeneous polynomi-
als. If DF(Φ) = GΦ, then each irreducible factor of Φ defines an algebraic solution
of F.

Proof. If P is an irreducible factor of Φ, then we can write Φ = P eQ, where e > 0
is an integer and Q ∈ C[x, y, z] is not divisible by P . Then

DF(Φ) = eP e−1QDF(P ) + P eDF(Q).

Substituting this into DF(Φ) = GΦ, and cancelling P e−1 throughout the equation,
we get

eQDF(P ) + PDF(Q) = GPQ.

Therefore, since gcd(P,Q) = 1 by hypothesis, it follows that P divides DF(P ).
Hence, P is an algebraic solution of F.

4. DARBOUX’S METHOD. Throughout this section F will be the line field of P2

defined by (5) and L, M , and N will be the homogeneous polynomials of degree
k ≥ 2 defined in (6). We saw in the last section that the curve given by the vanishing
of a nonconstant irreducible homogeneous polynomial Φ ∈ C[x, y, z] is an algebraic
solution of F if there exists a polynomial G ∈ C[x, y, z] such that D(Φ) = GΦ, with
D = DF the linear operator defined in (7). An important special case occurs when
F has two algebraic solutions, defined by nonconstant homogeneous polynomials Φ1

and Φ2, both of them of the same degree d and with the same cofactor G. Indeed, in
this case

D

(
Φ1

Φ2

)
=

Φ2D(Φ1)− Φ1D(Φ2)

Φ2
2

=
Φ2 · Φ1G− Φ1 · Φ2G

Φ2
2

= 0. (10)

Borrowing the terminology from differential equations, we will say that the rational
function Φ1/Φ2 is a first integral of F. The existence of a first integral implies that
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there is an algebraic solution of F through every point of P2. To see this, let p ∈
P2. If Φ2(p) = 0, for some p ∈ P2, then the algebraic solution Φ2 = 0 contains p;
otherwise, taking c = Φ1(p)/Φ2(p), we have that

D(Φ1 − cΦ2) = D(Φ1)− cD(Φ2) = GΦ1 − cGΦ2 = G(Φ1 − cΦ2).

Therefore, by Lemma 2, there is an irreducible factor of Φ1 − cΦ2 that defines an
algebraic solution of F through p.

Darboux realized that this argument could be generalized to produce multivalued
first integrals of F. However, to keep within the algebraic setting of this article we will
prove instead a result of Jouanolou [29, Théoréme 3.3, p. 102], who used Darboux’s
strategy to characterize line fields with rational first integrals.

Lemma 3. Let V be a complex vector space of dimensionm ≥ 1 and let v1,. . . , vm+4

be vectors in V . Reordering the v’s, if necessary, there exist, for i = 1, 2, complex
numbers αi,3, . . . , αi,m+4 ∈ C such that

vi +
m+4∑
j=3

αi,jvj = 0 and 1 +
m+4∑
j=3

αi,j = 0. (11)

Proof. Reorder the v’s so that vk, . . . , vm+4 is a basis of the subspace W of V gener-
ated by v1, . . . , vm+4 and consider the map θ : Cm+7−k →W × C defined by

θ(β1, β3, βk . . . , βm+4) =

(
β1v1 + β3v3 +

m+4∑
j=k

βjvj, β1 + β3 +
m+4∑
j=k

βj

)
.

Since dim(W ) = m+ 5− k, it follows from the rank-nullity theorem that the kernel
of θ is nonzero. Thus, there exist β1, β3, βk, . . . , βm+4 ∈ C such that

β1v1 + β3v3 +
m+4∑
j=k

βjvj = β1 + β3 +
m+4∑
j=k

βj = 0.

Moreover, β1 or β3 must be nonzero because vk, . . . , vm+4 is a basis of W . Thus,
swapping the first two vectors, if necessary, we can assume that β1 6= 0. Setting

α1,2 = α1,4 = · · · = α1,k−1 = 0 and α1,j =
βj
β1

for j = 3, 5, k, . . . , d+ 4,

we get (11) when i = 1. The corresponding equations when i = 2 follow by the same
argument with v1 and v3 replaced, respectively, by v2 and v4.

Before stating the theorem, we establish a formula that will be used twice in its
proof. Let E = x∂x + y∂y + z∂z be the Euler operator and let ψ be a function of the
variables x, y, and z that is holomorphic on an open set of C3. Then, by (6),

zD(ψ)−NE(ψ) = A∂y(ψ)−B∂x(ψ). (12)

Theorem 4. If a line field F of degree k has at least 4 + k(k + 1)/2 algebraic solu-
tions, then it has a rational first integral.
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Proof. Let m = k(k + 1)/2 and let Φ1, . . . ,Φm+4 be nonconstant homogeneous
polynomials in C[x, y, z] that define algebraic solutions of F. We will denote the cor-
responding cofactors byG1, . . . , Gm+4. Since F has degree k, it follows from (8) that
G1, . . . , Gm+4 belong to the m-dimensional complex vector space of homogeneous
polynomials of degree k − 1. Thus, by Lemma 3 it is possible to order theG’s so that,
for some choice of αi,3, . . . , αi,m+4 ∈ C,

Gi +
m+4∑
j=3

αijGj = 1 +
m+4∑
j=3

αij = 0 for i = 1, 2. (13)

Set

ψi = log(Φi) +
m+4∑
j=3

αij log(Φj), for i = 1, 2.

Differentiating ψi with respect to a variable ξ ∈ {x, y, z}, we get

∂ξ(ψi) =
∂ξ(Φi)

Φi

+
m+4∑
j=3

αij
∂ξ(Φj)

Φj

. (14)

Hence, taking D = DF as in (7), we have

D(ψi) =
D(Φi)

Φi

+
m+4∑
j=3

αij
D(Φj)

Φj

.

Taking into account that D(Φj) = GjΦj , for 1 ≤ j ≤ m+ 4, we conclude that

D(ψi) = Gi +
m+4∑
j=3

αijGj = 0.

A similar argument, this time using the second equality of (13), shows thatE(ψi) = 0.
Thus, by (12), 0 = −B∂x(ψi) +A∂y(ψi). Therefore,

ρi =
∂x(ψi)

A
=
∂y(ψi)

B
(15)

is a rational function. Since there are at least four nonconstant, irreducible Φ’s, the
derivatives ∂x(ψi) and ∂y(ψi) cannot both be zero. Moreover,

deg(∂x(Φj))− deg(Φj)− deg(A) = −1− (k + 1) = −k − 2, (16)

for all 1 ≤ j ≤ m+ 4. Now, by (6),

∂y(A)− ∂x(B) = −2N − E(N) + z div(D) = −(k + 2)N + z div(D),

where div(D) = ∂x(L) + ∂y(M) + ∂z(N). But, by (15),

0 = ∂y(∂x(ψi))− ∂x(∂y(ψi)) = A∂y(ρi)−B∂x(ρi) + ρi(∂y(A)− ∂x(B)),
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so that

A∂y(ρi)−B∂x(ρi) = −ρi(∂y(A)− ∂x(B)) = ((k + 2)N − z div(D))ρi.

Therefore, by (12),

zD(ρi)−NE(ρi) = ρi((k + 2)N − z div(D)). (17)

But, from (16) and the fact that numerator and denominator of ρi are homogeneous,
we get thatE(ρi) = −(k + 2)ρi. Taking this into (17) and cancelling common terms,
we deduce that D(ρi) = −ρi div(D), for i = 1, 2. Therefore, D(ρ1/ρ2) = 0 by an
argument analogous to that used in (10). Moreover, using (14),

ρ1
ρ2

=
∂x(ψ1)

∂x(ψ2)
=
∂y(ψ1)

∂y(ψ2)

can be written as a quotient of homogeneous polynomials of the same degree. Finally,
this rational function cannot be constant because ∂ξ(ψ1) and ∂ξ(ψ2) have distinct
denominators.

The lower bound in Jouanolou’s original result was 2 + k(k + 1)/2; we have in-
creased it to 4 + k(k + 1)/2 in order to simplify the proof. It turns out that this does
not weaken the result, because combining Theorem 4 with the argument preceding it,
we have the following corollary; see [29, Théoréme 3.3, p. 102].

Corollary 5. A line field has a rational first integral if and only if it has infinitely many
algebraic solutions.

The proof given above is adapted from [9, pp.13–14] and [10, p. 81]. The theorem
was generalized by E. Ghys in [22]; see also [20, Theorem 2.1, p. 731], where its
relation to model theory is also discussed.

5. THE POINCARÉ PROBLEM. Drawing inspiration from Darboux’s work, and
from later work by P. Painlevé and L. Autonne, in 1891 Poincaré published a paper [35]
devoted to the study of polynomial differential equations, which begins as follows:

In order to determine if a differential equation of the first order and the first degree is alge-
braically integrable, it is evidently enough to find an upper bound for the degree of the integral;
after that one needs only to perform purely algebraic computations.

In Poincaré’s terminology, a differential equation is algebraically integrable if it ad-
mits a rational first integral whose numerator and denominator are non-constant poly-
nomials of the same degree. The degree of a rational first integral is the degree of its
numerator and denominator. However, as Poincaré points out in the same paper, if ρ is
a first integral of a given differential equation then

one will get another form of the general integral on equating to a constant any polynomial with
respect to [ρ]. As a result one cannot find an upper limit of the degree of the general algebraic
integral, unless one finds some means of expressing, in the inequalities, that this integral is
[indecomposable;]

to which he adds that, finding these means, is precisely what he aims to do in his paper.
What Poincaré is getting at is that, if ρ is a rational first integral of a given differential
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equation, and ψ ∈ C[x, y, z], then it follows from the chain rule that ψ ◦ ρ is also
a rational first integral of the same differential equation. Thus, one can only find the
desired upper bound on the degree of ρ if one includes the hypothesis that ρ cannot be
written as a composition of a polynomial with another rational first integral, which is
what is meant by an indecomposable first integral.

But we saw in Section 4 that if Φ1 and Φ2 are polynomials such that Φ1/Φ2 is a
rational first integral of a line field F, then the irreducible factors of Φ1 − cΦ2 are
algebraic solutions of F, for all c ∈ C. Therefore the first step in settling the question
posed by Poincaré is to solve the following problem, which became known, in the 20th
century, as Poincaré’s problem.

Poincaré’s Problem. Given a line field of P2, find an upper bound on the degree of
the algebraic solutions of F.

A partial solution to Poincaré’s problem was proposed by Jouanolou, who showed
in [29, Proposition 4.1, p. 126] that the degree of a smooth algebraic solution of F must
be at most equal to deg(F) + 1. Corollary 5, which appears in the same monograph,
has had a significant impact in the history of Poincaré’s problem. Indeed, since a line
field without a rational first integral has finitely many algebraic solutions, there must
be an upper bound on the degree of these solutions. This shifted the focus from line
fields with rational first integrals to those that do not have such integrals.

The first significant advance towards a solution of Poincaré’s problem, after
Jouanolou’s work, was the article [6, Theorem 1, p. 891]. In it, D. Cerveau and
A. Lins Neto showed that a nodal curve can only be an algebraic solution of F if its
degree is at most deg(F) + 1. From the algorithmic point of view, this result has the
advantage that there are hypotheses on F that force its algebraic solutions to be nodal
curves [12, Proposition 2.3, p. 607]. A far more general bound, whose hypotheses can
also be checked directly on the line field, was found by M. Carnicer in [5].

All these bounds require F to satisfy some extra hypothesis. Indeed, there can-
not be an upper bound on the degree of an algebraic solution that holds for all line
fields of a given degree. For example, the curve defined by the vanishing of Φ =
zm−1y − xm, which is a polynomial of degree m, is an algebraic solution of the line
field F(x, y, z) = [myz : −xz : (1 −m)xy]. Indeed, writing the entries of F as in
(6), we find that L = x, M = my, and N = 0, so that

L∂x(Φ) +M∂y(Φ) +N∂z(Φ) = x(−mxm−1) +my(zm−1) = mΦ.

Thus, (7) is satisfied with G = m. However, F has degree one. A far more refined
example, of the same nature, was found by Lins Neto. Poincaré’s attack on the problem
in [35, 36], consisted in trying to find an upper bound that would work for all line fields
of a given degree, with nondegenerate singularities of a fixed local analytic type. In [32,
Main Theorem, p. 234] Lins Neto shows that this is not possible, by constructing line
fields that satisfy all these properties, but whose rational first integrals are defined by
polynomials of arbitrarily large degree.

We end this section with a watered-down version of S. Walcher’s (partial) solution
of the Poincaré problem; see [41, Theorem 3.4, p. 66]. Although this solution came
after those in [6, 5], it is easier to explain without introducing a lot of machinery. But
before we state it, we need a definition. The line at infinity L∞ is said to be transversal
to an algebraic curve Γ if Γ has a well-defined tangent line different from L∞ at every
point of Γ ∩ L∞. When Γ is defined by the vanishing of a polynomial Φ ∈ C[x, y, z],
the transversality condition amounts to saying that, at every p ∈ Γ ∩ L∞, one has
∂x(Φ)(p) 6= 0 or ∂y(Φ)(p) 6= 0.
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Theorem 6 (S. Walcher [41]). Let F be a line field of P2 that has the line at in-
finity L∞ as one of its algebraic solutions. If an algebraic solution Γ 6= L∞ of F is
transversal to L∞, then deg(Γ) ≤ deg(F) + 1.

Proof. If Φ(x, y, z) is a homogeneous polynomial of degree d that defines the curve
Γ, then

Γ ∩ L∞ = {[x0 : y0 : 0] ∈ P2 |Φ(x0, y0, 0) = 0}.

Writing Φ as a polynomial in z with coefficients in C[x, y], we have

Φ(x, y, z) =
d∑
i=0

Φi(x, y)zd−i, (18)

where Φi is a homogeneous polynomial of degree i in C[x, y]. Hence,

0 = Φ(x0, y0, 0) = Φd(x0, y0).

Since Φd(x, y) is a homogeneous polynomial in two variables, it can be factored in
the form

Φd(x, y) =
d∏
i=1

(αiy − βix), (19)

which implies that

Γ ∩ L∞ = {[αi : βi : 0] | 1 ≤ i ≤ d}.

In particular, #(Γ ∩ L∞) ≤ d. Now we bring in the transversality hypothesis which,
as we have seen, is equivalent to saying that for every 1 ≤ i ≤ d, one has ∂xΦd(pi) 6=
0 or ∂yΦd(pi) 6= 0. However, this holds if and only if αiy − βix has multiplicity one
in the factorization (19). Hence, the pi’s are all distinct, so that

#(Γ ∩ L∞) = deg(Γ). (20)

Assume now that pi is a singular point of F, for some 1 ≤ i ≤ d, and note that the
definition of transversality requires that ∇Φ(pi) 6= 0, for all 1 ≤ i ≤ d. Since Φ and
L∞ are both algebraic solutions of F, it follows that ∇Φ(pi) and the tangent vector
(0, 0, 1) of L∞ must be collinear with F(pi), which contradicts the transversality as-
sumption. Therefore, all the points of Γ ∩ L∞ must be singularities of F. Combining
this with (20), we conclude that

deg(Γ) = #(Γ ∩ L∞) ≤ #(Sing(F) ∩ L∞). (21)

Finally, we must count the number of singular points of F that belong to L∞. Since
we are assuming that L∞ is an algebraic solution of F, it follows from Proposition 1
and equation (7) that DF(z) = N must be a multiple of z; say N = zN̂ . Thus, by
equation (6),

A = z(−yN̂ +M) and B = z(xN̂ − L),
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In particular, both A and B are multiples of z. But if p = [x0 : y0 : 0] ∈ Sing(F) ∩
L∞, then

−x0M(x0, y0, 0) + y0L(x0, y0, 0) = C(p) = 0.

In other words, x0y − y0x is a linear factor of ∆ = xM(x, y, 0) + yL(x, y, 0).
Moreover, ∆ cannot be identically zero for, otherwise, C would also be a multiple
of z and gcd(A,B,C) would not be 1. But ∆ has as many distinct linear factors as
its degree, which is equal to deg(F) + 1. Therefore, by (21),

deg(Γ) ≤ #(Sing(F) ∩ L∞) ≤ deg(F) + 1,

as we wished to prove.

The above result is a special case of the theorem proved by S. Walcher in [41,
Theorem 3.4, p. 66]. Unlike Theorem 6, Walcher’s result is effective: a condition is
imposed on the field F that can be easily checked by a computer and that forces the
curve Γ and the line L∞ to be transversal; see [12, Proposition 2.3, p. 607].

6. CODA. The story that began with Darboux’s 1878 paper is far from over. Two ar-
eas, in particular, have seen a number of advances in the last 20 years: the Poincaré
problem and the effective calculation of Darboux polynomials. Ironically the latter cor-
responds to the “purely algebraic computations” that, according to Poincaré, one “need
only perform” in order to get the algebraic solutions. Indeed, using the method of un-
determined coefficients to find an algebraic solution of degree d, one gets a system
of polynomial equations of degree two in (d+ 1)(d+ 2)/2 variables. Unfortunately,
solving such a system quickly gets beyond the reach of most computers. However,
several faster methods, based on completely different ideas have been proposed re-
cently. Using these methods G. Chèze proved in [8] that the problem can be solved in
polynomial time. Faster algorithms have been proposed, for example, in [2, 7].

There have also been significant advances in the solution of Poincaré’s problem;
both when the equations have a rational first integral, [11, 19, 21], and when there are
only finitely many algebraic solutions [13]. Moreover, similar problems have been in-
vestigated in many other contexts, among them: projective spaces of dimension higher
than two [16, 40]; varieties other than projective spaces [3, 17]; Pfaff equations [3, 18];
and line fields over fields of positive characteristic [34]. Several of these results have
made it into books on the analytic theory of differential equations, such as [4, 25].
However, despite all these advances, the problem remains tantalizingly open, even for
line fields of P2.
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22. Ghys, E. (2000). À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuil-

letages holomorphes. Rend. Circ. Mat. Palermo49(2):175–180.
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