ALGEBRAIC SOLUTIONS OF HOLOMORPHIC FOLIATIONS:
AN ALGORITHMIC APPROACH

S. C. COUTINHO AND L. MENASCHE SCHECHTER

ABSTRACT. We present two algorithms that can be used to check whether a
given holomorphic foliation of the projective plane has an algebraic solution,
and discuss the performance of their implementations in the computer algebra
system SINGULAR.

1. INTRODUCTION

The study of algebraic solutions of differential equations of the first order and
the first degree over the complex projective plane P? goes back to the work of G.
Darboux in the 1870s. In [11] Darboux showed that if an equation of this kind has
enough algebraic solutions then it must have a first integral. In 1891, Poincaré [18]
pointed out that in order to find an explicit algebraic solution to such an equation
it would be enough to find an upper bound on the degree of the solution in terms
of the degree of the polynomials that define the equation. Indeed, if the equation is
defined by polynomials of degree less than or equal to 2, then it always has solutions
of degree 1, a fact already known to Darboux.

In the twentieth century the results of Darboux and Poincaré were reworked as
part of the theory of holomorphic foliations. The search for bounds on the degree
of the solution is now known as Poincaré’s Problem, and many such bounds have
been found; see [6], [5] for example. However, these turned out to be of limited use
in solving differential equations in view of the following result of J. P. Jouanolou
[14, theoreme 1.1, p. 158].

Theorem 1.1. A generic foliation of P? of degree greater than or equal to 2 does
not have any algebraic solutions.

For the definition of the degree of a foliation see section 2. As part of the
proof of this theorem, Jouanolou gave an explicit example of a family of foliations
with no algebraic solution. However, although Theorem 1.1 tells us that most
foliations do not have algebraic solutions, very few concrete examples (say, with
rational coefficients) are known. Moreover, most of these examples are variations
on Jouanolou’s, and make use of the fact that the singular set of the foliation has
a rather large symmetry group. However, a greater variety of concrete examples
would help in the study of several problems in the theory of holomorphic foliations.
Foremost among these is the problem of the existence of nontrivial minimal sets,
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which has already been approached from a computational point of view in [4].
Foliations without algebraic solutions have also been used to construct families
of nonholonomic D-modules, see [8] and [9]. Nevertheless, little is known of the
properties of these modules, in part because there are so few concrete examples to
be used in exploratory concrete calculations.

A more systematic approach to finding examples of holomorphic foliations with-
out algebraic solutions consists in generating a random foliation of a given degree,
and using a computer to check that it does not have an algebraic solution of degree
less than or equal to the bound provided by a solution of Poincaré’s Problem. This
was actually successfully implemented in [7]. However, the computations required
in this approach are extremely costly, so that it is in practice limited to foliations
of degree 2.

One way to improve the algorithmic approach is to settle for a procedure that
will either prove that the foliation does not have any algebraic solutions, or return
I don’t know. This is exactly what we do in this paper. In fact, we propose
two such algorithms. The reason why these algorithms are expected to be often
successful is the well-known fact that a generic polynomial in one variable with
rational coefficients is irreducible over Q. As will be shown in a forthcoming paper,
a similar strategy can be used to construct families of foliations without algebraic
solutions that are far more general than Jouanolou’s.

The plan of the paper is as follows. In section 2 we introduce some basic facts
concerning foliations of the complex plane in a suitable way for the applications in
later sections. The two algorithms are described and proved to be correct in sections
3 and 4. Finally, in section 5 we discuss our implementations of the algorithms in
the computer algebra system SINGULAR [20], and analyse their performance.

2. FOLIATIONS OF THE PROJECTIVE PLANE

In this section we discuss the basic facts about foliations of the complex projective
plane P? in a way that is suitable for the applications of the forthcoming sections.

Let n > 0 be an integer, and denote by z, y and z the homogeneous coordinates
of the complex projective plane P2. A holomorphic foliation F of P? is defined by
a 1-form Q) = Adx 4+ Bdy + Cdz, where A, B and C are homogeneous polynomials
of degree m + 1 that satisfy the identity tA + yB + 2C = 0. A singularity of F is
a common zero of A, B and C. We denote the set of singularities of F by Sing(F)
or Sing(2). If Sing(F) is finite then we say that F is saturated.

Let U, be the open set of P? defined by z # 0 and let w be the dehomogeneization
of Q with respect to z. Restricting the foliation of P? defined by (2 to U., we obtain
the foliation of C? defined by w. Conversely, if 7, : U, — C2 is the map given by
m.lr iy 2] = (x/2,y/z), then Q = zF7*(w), where k is chosen so as to clear the
poles of 7} (w).

From now on we deal only with a foliation of C? defined by a 1-from w =
adzx + bdy, where a,b € C[z,y]. Note that if  is as above, then

a(z,y) = A(x,y,1) and b(z,y) = B(z,y,1).

Moreover, we assume that w is saturated, which means ged(a,b) = 1. A singularity
of w is a common zero of a and b. The set of all the singularities of w is denoted
by Sing(w). It follows from Bézout’s theorem that this is a finite set, because we
are assuming that w is saturated. Although Sing(w) need not be equal to Sing(£2),
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the two sets coincide if Sing(£2) does not intersect the line at infinity L. Indeed,
in this case, every zero of A and B is also a zero of C because zA + yB + 2C = 0.
From now on, we assume that the coordinates of P? have been chosen so that
Sing(2) N Lo = 0.

As a consequence of this choice of coordinates, we have that the polynomial
xA(z,y,0) + yB(z,y,0) is identically zero, and that A(z,y,0) and B(x,y,0) are
nonzero homogeneous polynomials. Since A(z,y,0) and B(x,y,0) are equal to the
leading homogeneous components of a and b, we conclude that

a=yh+ay and b= —zh+ by,

where ag and by are polynomials of degree less than or equal to n, and h is homo-
geneous of degree n. In particular,

deg(a) = deg(b) = n + 1.

The number

n = deg(a) — 1 = deg(b) — 1,
is called the degree of w. We also say that n is the degree of the foliation F defined
by w on P2.

Let f € C[z,y] be a reduced (square free) polynomial, and consider the algebraic
curve C' defined by the vanishing of f. We say that C' is invariant under the
foliation F, if C is tangent to the vector field dual to w at every point outside
Sing(C) U Sing(w). This is equivalent to the existence of a polynomial 2-form 7
such that

wAdf = fn.
The curve C is also called an algebraic solution of F (or w). By abuse of notation
we also talk of f being invariant under w. The next proposition characterizes the
kind of invariant curve that we can expect a 1-form w to have if its coefficients are
rational numbers. The proof given here is based on [17, proposition 3.3, p. 36].

Proposition 2.1. Ifw has an algebraic solution, then there is a reduced polynomial
with rational coefficients which is invariant under w.

Proof. Suppose that w has an algebraic solution of degree k > 1. Let

f= Z cgjxiyj and g = Z cayt

i+j<k s+t<n—1
be polynomials in x and y, with undetermined coeflicients. Let

C={c;,c3:0<i+j<kand 0<s+t<n-—1}

and denote by N the number of elements of C. Consider the ideal J generated by
the coefficients of the monomials in  and y on the left hand side of

of ,of
a8x+b8y gf =0.
J is an ideal of the polynomial ring Q[C].
Since w has a solution of degree k, then it has a solution for which cllojo #0
for some choice of integers ig, jo > 0 with ig + jo = k. However, the polynomials
of J are homogeneous on the c's. So we can assume, without loss of generality,
that c}ojo = 1; which implies that the constant polynomial is not a solution of

J():Jcl =1-

i0Jo

(2.1)
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Now consider the variety X in CV =1 defined by Jy. Suppose, first, that dim(X) =
d > 0. Then by [19, Theorem 10, p. 52], there exists a finite surjective map

7 X — CY

Let ¢ € Q%, and consider the fibre 771(¢q). Since 7 is onto, it follows that 0 <
#m~1(q) < oo. Moreover, since the polynomials that define 7~!(g) have rational

coefficients, then 7—1(q) C @N_l. In particular, the coordinates of the points of
7 1(q) are algebraic numbers. Therefore, these coordinates must all be contained
in a finite normal extension K of Q. Thus, by the definition of X, a point of 771(q)
corresponds to a pair of polynomials f,g € K|z, y] that satisfy (2.1).

Suppose now that dim(X) = 0. In this case, applying the same argument to X
itself, instead of m~!(g), we conclude that there exist polynomials f,g € K|z,
that satisfy (2.1), where K is a normal extension of Q.

In either case, let G be the Galois group of K over Q. Since a and b have
rational coefficients, it follows that o(f) and o(g) also satisfy (2.1) for all o € G.
Therefore, F' = [[,cno(f) is also a solution of (2.1). However, F' is invariant
under G, hence its coefficients must be rational. Thus, the squarefree part of F is
a reduced polynomial with rational coefficients that is an algebraic solution of w,
which proves the proposition. (I

We now turn to the definition of the characteristic exponents, which will play
a very important role in both of our algorithms. But, first, we fix the hypotheses
that will be in force for the remainder of the section:

Hypotheses 2.2. Take F to be a foliation of P? determined by a 1-form w =
adx + bdy, where a,b € Q[z,y], and assume that Sing(F) N Lo = 0.

Let p € Sing(w). The 1-jet at p of the vector field dual to w is

| 0b/Ox  Ob/Oy
Ju(p) = —0a/0x —da/dy

We say that F is nondegenerate at p if det(J,(p)) # 0. In this case, the eigenvalues
A1 and Ay of J,(p) are both nonzero, and the quotient Ay /A2 and its reciprocal are
the characteristic exponents of w at p. Let

_ trace(J,(p))?
pu(p) = W

An easy computation shows that p,(p) is related to the characteristic exponents
by the formula

A1 A
2.2 = —4 =42
The set of all complex numbers that are characteristic exponents of F at one of
its singularities will be denoted by Exp(F) or Exp(w). For a proof of the next
proposition see [14, Proposition 4.1, p. 126], [21, Lemma 5.1, p. 156] and [6,

Theorem 1, p. 891].

Proposition 2.3. If C is a reduced algebraic curve that is invariant under w, then
Sing(w) N C # 0. Moreover, if Exp(w) N Q = 0 then all the singularities of the
projectivization C of C are nodes and

deg(C) < deg(F) + 2.
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Given a singular point p € C? of w, let V,, \ be the eigenspace of J,(p) with
respect to the eigenvalue A. If C is a reduced algebraic curve invariant under w,
and w is nondegenerate at all p € Sing(w), set

Exp(w,C) = {\1/A2 € Exp(w) : Vp x, N T,C # Ofor some p € Sing(w) N C'}.

The next theorem is an immediate consequence of the Camacho-Sad Index The-
orem; see [3, Theorem 2, p. 37].

Theorem 2.4. Let C be a reduced algebraic curve of degree d invariant under w.
If all the singularities of C' are nodes, and w is nondegenerate at all p € Sing(w),

then
Y q=d-2
q€Exp(w,C)
where § is the number of nodes of C.

The final result of this section is a corollary of a famous theorem of Baum and
Bott [2, Theorem 1, p. 280], although the first half of the result was originally
proved by Darboux [11, p.84]. For a direct proof in this special case see [22, Theorem
1.1, p. 150] or [3, Theorem 1, p. 34]. Before we state the theorem, we must
introduce some notation. If p is a singularity of w, define the multiplicity u,(w) of
w at a singularity p to be the intersection number of a and b at p. In particular,
pp(w) =1 if and only if w is nondegenerate at p.

Theorem 2.5. Let w be a 1-form of degree n that satisfies Sing(w) N Lo, = 0, then

(2.3) Z pp(w) =n® +n+ 1.
pESing(w)

Moreover, if w is nondegenerate at all of its singular points, then

(2.4) Y. pp)=(m+2)%

pESing(w)

The following result is an immediate consequence of the theorem, and will be
useful in the coming sections.

Corollary 2.6. Let w be a 1-form of degree n that satisfies Sing(w) N Lo, = 0, then
w has n? +n + 1 singularities, counted with multiplicity, all of which belong to the
open set z # 0. Conversely, if w has n? +n + 1 distinct singularities at z # 0 then
Sing(w) N Lo = 0.

3. THE FIRST ALGORITHM

Let a and b be polynomials of degree n + 1 in Q[z,y], and consider the 1-form
w = adx + bdy. Let go(x) be a generator of the ideal (a,b) N Q[z]. Suppose that go
is irreducible over Q of degree n2+n+ 1. Note that these conditions imply that the
foliation induced by w has n? +n + 1 distinct singular points, all of which belong
to the open set z # 0. Moreover, L, cannot be invariant under w by Proposition
2.3. Therefore, zan+1 + ybn+1 = 0, as we have seen in section 2. The proof of the
next theorem is inspired on that of [6, Theorem, p. 90].

Theorem 3.1. Let F be a foliation of P? determined by a 1-form w = adx + bdy,
where a,b € Q[z,y]. Assume that:

(1) Sing(F) N L = 0;
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(2) F has degree n > 2;

(3) go is the generator of the ideal (a,b) N Q[z].
If go is irreducible over Q of degree n?> +n +1, then F does not have any algebraic
solutions in P2,

Proof. Since g is irreducible, it follows that

Q[z]/(90) — Qlz,y]//(a,b).

But,
n? 4+ n+1 = dimg(Q[x]/(g0)) < dimg(Q[z,y]/+/(a,b)) < n? +n+1,

so that both algebras have dimension n? + n 4 1 over Q. Therefore,

V(a,b) = (90,5 = g1),

where g1 is a polynomial in Q[z] of degree at most deg(go) — 1. The set {go,y — g1}
is a reduced Grébner basis of 1/(a,b) for the lexicographical order with y > x. In
particular, the singularities of w are of the form (zg, g1(x0)), for some complex root
o of go-

Let G be the Galois group of gg over Q. Since gq is irreducible over Q, it follows
that G acts transitively on the set of roots of gg. Hence, it must also act transitively
on the set Sing(w), by

(o0, 91(z0)) = (0(20), 91(c(20))),
for o € G.
Assume now that w has an algebraic solution. Then, by Proposition 2.1 there
exists a reduced polynomial f € Qx,y] that is invariant under w. Since f and w
are both stable under G, it follows from Proposition 2.3 that

Sing(w) C Z(f) =C.
‘We must analise two cases.

FIRST cASE: C is nonsingular at every point of Sing(w).

We have, by hypothesis, that C' is nonsingular at every singular point of w. But,
being invariant under w, the curve C' cannot be singular anywhere else. Since F
does not have singularities at Lo, it follows that the projectivization C' of C is
a nonsingular curve of P2. Hence, by [14, Proposition 4.1, p. 126] there exists a
homogeneous polynomial h, and a homogeneous 1-form 7 such that

(3.1) Q = hdF + Fr,

where F' and 2 denote the homogeneizations of f and w with respect to z. Taking
into account that the coefficients of Q0 have degree n + 1, we see that deg(h) +
deg(F) =n+2.

However,

Sing(2) = Sing(w) C Z(F) = C,

which is the projectivization of C. Therefore, by (3.1), hdF vanishes at every
singularity p of w. But, C' is a nonsingular curve, so that dF(p) # 0 at every p € C.
We conclude that h(p) = 0 for every p € Sing(Q2). In particular,

#(CNZ(h) = n®+n+1.
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However, by Bézout’s Theorem
#(CN Z(h)) = deg(F) deg(h) = deg(F)(n + 2 — deg(F)).
Moreover, deg(F) < n + 1 by [14, Proposition 4.1, p. 126], so that
deg(F)(n 42 — deg(F)) < n® +n+ 1,
whenever deg(F') > 2. Thus, deg(F) = 1. But all the singularities of w are also
zeroes of a”, the homogeneization of the polynomial a with respect to z. Since a”
has degree n + 1, it follows by Bézout’s Theorem that
n? +n+1 < deg(a")deg(F) = deg(a") =n +1,
a contradiction. Therefore, w cannot have a nonsingular invariant curve.

SECOND CASE: C' is singular at some point py € Sing(w).

Since f is singular at py € Sing(w), it follows that (Vf)(py) = 0. But G acts
transitively on Sing(w), and f has rational coefficients, so that

0=0((Vf)(po)) = (Vf)(o(po))-
Therefore, C' is singular at every singularity of w.
We now turn to some properties of w. We already know that w has n? +n + 1
distinct singularities. Thus, by Theorem 2.5,

pp(w) =1, for every p € Sing(w).

In particular, w is nondegenerate at every one of its singularities.
Next, we want to show that w does not have any rational characteristic expo-
nents. In order to do this, consider the set

R ={p.(p) : p € Sing(w)}.
If w has a rational exponent, then R N Q # 0. However, G acts transitively on
Sing(w) and since
o(pu(p)) = pu(a(p)),
it follows that o acts transitively on R. Thus, RN Q # (), implies that all the

elements of R are rational numbers. But rational numbers are stable under G, so
that R = {q} C Q. Hence, by Theorem 2.5, we conclude that

(n?*+n+1)g=(n+2)>%

In particular, if ¢ and 1/e are the corresponding characteristic exponents, we find
that

_ —n?42n+2 n(n +2) J3
T2 +n+1)  2m2+n+1)
But this is not a rational number. Therefore, Exp(w) N Q = 0.
Thus, by Proposition 2.3, all the singularities of C' must be nodes. Since C' is
reduced, it follows from [13, Problem 5-25, p.118] and the inequality of Proposition
2.3 that

n+n+1=

Z mp(mp—1)<n2+3n+2
pESing(w) 2 - 2 7
where m,, is the multiplicity of C at p. But this inequality implies that n < 1,
which is a contradiction. ([l

We will isolate a consequence of the last part of the proof of Theorem 3.1 for
future reference.
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Corollary 3.2. Let w be a saturated 1-form and let C be a reduced algebraic curve

of C2. If

e Sing(w) C Sing(C), and
e Exp(w)NQ =1,

then C cannot be invariant under w.

These results provides a strategy to check that a given saturated 1-form of degree
n > 1, say w = adx + bdy, does not have any algebraic invariant curves. All we
have to do is check that L is not invariant under w, and that the generator gg of
(a,b) N Q[z,y] is irreducible of degree n? + n + 1. The desired conclusion follows
from Theorem 3.1.

The most obvious way to implement this strategy is to compute a Grobner basis
for (a,b) with respect to the lexicographical order with z < y. The polynomial gy
is one of the elements of this basis. The irreducibility of gy can be checked using
a factorization algorithm. Moreover, since w is saturated, the ideal generated by a
and b is zero dimensional. Thus we can improve the performance of the procedure
using the FGLM algorithm to compute the Grobner basis. [12], [1, exercise 2.2.8,
p. 68]. However, in practice, there is an altogether better approach which consists
in using resultants, instead of Grobner basis, as shown in the following algorithm.

Algorithm 3.3. Given a 1-form w = adx+bdy, where a,b € Q|x,y] are polynomials
of degree n + 1 > 3, the algorithm returns one of four messages: the foliation
15 not saturated, the line at infinity is an algebraic solution, there
are no algebraic solutions, or do not know.

Step 1: If ged(a,b) # 1, stop and return the foliation %s not satura-
ted.

Step 2: If the polynomial xan1 + Ybny1 is nonzero, stop and return the
line at infinity is an algebraic solution.

Step 3: Compute the resultant R(x) of a and b with respect to y.

Step 4: If R is reducible or deg(R) < n? 4+ n + 1, stop and return do not
know.

Step 5: Stop and return there are nmo algebraic solutions.

Proof. Steps 1 and 2 check that w is saturated, and that L., is not invariant under
w. In particular, this implies that w induces a foliation of degree n in P?. Since

R € (a,b) NQ[z] = (g0),

we conclude from step 4 that R = go. The result now follows from Theorem 3.1. [

It may be worth pointing out that this algorithm is not in any way weaker than
the one originally proposed. After all, if the generator gg of (a, b))NQ[z] is irreducible
of degree n? +n + 1, then it must be equal to the resultant R. This follows from
the fact that every z-coordinate of a singular point of w must be a root of R, which
is a polynomial of degree less than or equal to n2 +n + 1.
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4. THE SECOND ALGORITHM

The algorithm discussed in the previous section will work only if the z coordinates
of the singular points of the 1-form w are roots of a polynomial equation that is
irreducible over Q. Although this condition is expected to hold generically, it fails
often when the polynomials that define w are sparse, as shown in section 5. However,
there is another algorithm, based on Theorem 2.4 that might work even in this case.

Let w be a 1-form with rational coefficients. Assume that the hypotheses of 2.2
are in force, and that w is nondegenerate at every one of its singularities. Consider
the ideal

L = (a,b, tdet(J,) — trace(.J,,)?)
of Q[xz,y,t], and let ¢ be the generator of L N Q[t]. By equation (2.2), the charac-
teristic exponents of w must all be roots of the polynomial

2 1
g=u" g (u+ - +2> .
The algorithm depends on the following result.
Proposition 4.1. Let f € Q[z,y] be a reduced polynomial and denote by C the
curve defined by f = 0. Assume that:

(1) w is nondegenerate;

(2) q is reduced of degree n* +n + 1,

(3) ¢ does not have any rational roots, and
(4) C is invariant under w.

Then, there exists a subset S of the set of irreducible factors of ¢ over Q such that
Exp(w, C) is the set of all roots of & = Hq&ES 0.

Proof. First of all, note that if ¢ is reduced of degree n? + n + 1 with no rational
roots, then ¢ is reduced of degree 2(n? + n + 1), and also has no rational roots.
These are the hypotheses on ¢ that are used in the proof of the proposition.

Let j = 1,2. Denote by M; the ideal of 2 X 2 minors of the matrix

Jw — Uj]
Vf ’
and by A; the determinant of J, — v;I. Consider the ideals

Il = (a,b,Al,AQ,’Ul — UV, (Ul — UQ)U] - 1) and IQ = 11 +M2

of Q[x,y,v1,v2,u,w|, and let v; be the generator of v/I; N Qlu].
If Ay # Ay are two eigenvalues of the 1-jet of w at the singularity (xg,yo), then
ug = A1/A2 # 1 is a characteristic exponent of w and

(1'072/07)\13)‘2;'”03 1/()\1 - )\2)) € Z(Il)’

the set of zeroes of I in C%. By [10, Lemma 1, Chapter 3, section 2, p. 121], every
element of Exp(w) is a root of ;. Thus, ¢ divides ;. Hence,

deg(@) é deg(71) S dim(@[xayvvthau?w]/ V Il) S 2(712 +n+ ]‘)
It follows, from the hypothesis on ¢, that v; = ¢, and that
deg(/yl) = dlm(@[l’, Y, V1,02, U, w]/ V Il) = 2(n2 +n+ 1)

In particular, by [15, Theorem 3.7.23, p. 255] /1 is in general position with respect
to w (or normal u-position in the terminology of [15]).
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We must now identify the zeroes of I5. Suppose that
(20, Y0, A1, A2, w0, wo) € Z(1a).

Then,
(‘TO?yO) € Sing(w),
ug = A1/Aa,
)\1 7& )‘27
A1 is an eigenvalue of w at (zg, yo), and
wo = 1/(/\1 — )\2)
We must still investigate the condition imposed by the ideal of minors M;. Two
cases can occur. If Vf(xo,y0) # 0, then the vanishing of M, implies that there
exists an eigenvector v # 0 of )y, that is tangent to C. On the other hand, if

V f(z0,90) = 0 then f is singular at (zo,yo), so that T,C = C%. In either case,
ug € Exp(w,C). Since the converse is clearly true, we conclude that

up is a u-coordinate of a point in Z(I») if and only if uy € Exp(w, C).

Since I; C I, and /I is in general position with respect to u, it follows that
so is v/I. Therefore, by [15, Theorem 3.7.25], a complex number is a u-coordinate
of a point of Z(I3) if and only if it is a root of the generator vo of /I> N Q[u].
But, I; C I, implies that o divides v = ¢. Since § is reduced, the theorem is
proved. (Il

The strategy now consists in showing that Theorem 2.4 cannot be satisfied by
any curve with rational coefficients. However, before we do this we must determine
the number of nodes of a curve invariant under w. Suppose that C, § and ® are as
in Proposition 4.1. If C is singular then, by Proposition 2.3, all of its singularities
are nodes. Let ¢ be the number of nodes of C. Given a polynomial ¢(u), in one
variable, let

¢ = ul= D g(1/u).
Corollary 4.2. We have that deg(ged(®, ®)) = 24.

Proof. Let a be a characteristic exponent of w at p € Sing(w). Then, p is a node
of C if and only if both o and 1/« belong to Exp(w,C). But this is equivalent to
« and 1/« being roots of ®. Therefore, the number of roots of ® whose reciprocal
is also a root of @ is exactly 26.

On the other hand, « is a root of @ if and only if 1/« is a root of ®. Therefore,
a is a root of d = ged(®, @) if and only if both o and 1/a are roots of ®. Of course,
in this case 1/« is also a root of d. From this remark, and the previous paragraph,
we conclude that deg(d) = 29. O

We are now ready to give a step by step description of the second algorithm.

Algorithm 4.3. Given a 1-form w = adz+bdy, where a,b € Q[z, y] are polynomials
of degree n + 1 > 3, the algorithm returns one of four messages: the foliation
15 not saturated, the line at infinity is an algebraic solution, there
are no algebraic solutions, or do not know.

Step 1: If ged(a,b) # 1, stop and return the foliation %is not satura-
ted.
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Step 2: If the polynomial xani11 + Ybnt1 is nonzero, stop and return the
line at infinity is an algebraic solution.
Step 3: Compute the generator q of L N Qlt], where

L = (a,b,tdet(J,) — trace(J,)?)

Step 4: If ¢ =0 or deg(q) < n? +n+ 1 stop and return do not know.
Step 5: If ged(q,dg/dt) # 1 stop and return do not know.
Step 6: Let

1
G =™ty (u -t 2) .

Step 7: Compute the set T of factors of ¢ over Q.
Step 8: IfT contains a polynomial of degree 1, stop and return do not know.
Step 9: For every proper subset S C T do:

Find the product ®g of all polynomials in S.

Let

g = ule(®)Pg(1/u).
Compute the coefficients ¢, and ¢p—1 of ®g, where m = deg(Pg),
and let

B(S) = cm_1/Cm + deg(ged(Pg, Bs))

If B(S) is an integer and a perfect square, stop and return do mot
know.
Step 10: Return there are no algebratc solutions.

Proof. As in Algorithm 3.3, steps 1 and 2 merely check that the foliation is sat-
urated, and that the line at infinity is not invariant under w. In order to apply
Proposition 4.1, we must first compute the polynomial ¢ (steps 3 and 6), and check
that it satisfies the assumptions of the proposition (steps 4, 5 and 8). Since we
would have to factor ¢ anyway, we prefered to check if it, rather than ¢, had any
rational roots. Note that if w has a degenerate singularity then L N Q[¢] = {0}, so
that ¢ = 0. If this is the case the program will stop in Step 4.

Let us now turn to step 9. Suppose that w has an invariant algebraic curve.
Thus, by Proposition 2.1, it must have an invariant algebraic curve C' with rational
coefficients. But Proposition 4.1 then implies that Exp(w, C) is equal to the set of

roots of
m
bg = H ¢ = unﬂ

¢eS j=0
where S is a subset of the set T of all factors of §. Note that we may assume that S
is a proper subset of T, for otherwise C' would be singular at every point of Sing(w),
which has been ruled out by Corollary 3.2. However, since the characteristic ex-
ponents of w are not rational numbers, it follows from Theorem 2.4 and Corollary
4.2 that the sum of the roots of ®g is equal to deg(C)? — deg(gcd(fbs,%g)). By
Newton’s formula this sum is also equal to ¢,,—1/¢,. Hence,

B(S) = cm_1/Cm + deg(ged(Pg, Bs))

must be an integer and a perfect square. Step 9 checks if this assumption is realised
for some proper subset S of T'. If it is not, then w cannot have any invariant algebraic
curves, and the proof of the algorithm is complete. [
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Even when this algorithm fails, it provides information on the possible solutions
of w. Let C be a curve with rational coefficients that is invariant under w. Then,
deg(C) must be an integer in the set {\/B(S) : S C T}. Moreover, the roots of
the generator of (L, ®g) N Q[z] are the = coordinates of the points of Exp(w, C).
Once one has this information, it is possible to use the method of undetermined
coefficients to find the actual solution.

5. EXPERIMENTAL TESTS

The algorithms described in sections 3 and 4 were implemented using the com-
puter algebra system SINGULAR (version 2.0.5) [20]. From now on we assume that
all the 1-forms w that we will be talking about can be written as

(5.1) w=(hy+ f)dx + (—zh + g)dy

where h € Q[z,y] is a homogeneous polynomial of degree n and f, g € Q|xz,y] are
polynomials of degree at most n.

In this case, the first algorithm checks only if the system of polynomial equations
that defines the singularities of w is in general position with respect to x. But this
property holds generically in the set of 1-forms that we are considering. Therefore,
it is not surprising that randomly generated pairs of dense polynomials of type
(hy+ f, —xh+ g) almost always give rise to a foliation that does not have algebraic
solutions. Table 1 gives the average time taken by the algorithm to prove that a
given pair is in general position in terms of the degree of the corresponding foliation.

All the tests discussed in this section were performed under Windows 2000 run-
ning on a micro-computer with an Intel Pentium 4 HT processor of 2.8 GHz, with
512 MB of primary memory. Table 1 summarizes the output of a program that
generates 50 pairs of dense polynomials for each degree and computes the total
CPU time taken to check that they are all in general position.

Degree of the foliation | Average execution time
2 2ms
5 31ms
10 750ms
15 9,7s
20 Imin e 12s
25 6min e 5s
30 19min e 24s

TABLE 1. Dense polynomials

If we generate sparse, instead of dense, polynomials the algorithm fails rather
often. There are two possible reasons for this, either (a) there are singularities at
the line at infinity L, or (b) some of the singularities have multiplicity greater
than one. We performed an experimental test which consists in generating 50 forms
of degree n, for 2 < n < 7. Each time the algorithm failed, we checked whether
that happened because of (a) or (b), above. The results are summarized in table 2.

As it stands, Algorithm 3.3 cannot cope with (b); however, (a) at first seems to be
only a case of bad luck. Indeed, by changing the coordinates we can easily arrange
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Degree Number of | Singular | Not in general
of foliation | failures | at Lo, (a) | position (b)
2 6 4 2
3 15 12 3
4 13 9 4
5 14 12 2
6 16 13 3
7 13 8 5

TABLE 2. Sparse polynomials

for the line at infinity to be free of singularities of the 1-form. Unfortunately, this
simple device does not work, as we proceed to show.

Let w be a 1-form with rational coefficients, and let £ be its homogeneization
with respect to z. Counsider the projective transformation defined by T[x : y: z] =
[ :y:2z— Aax,y)], where A € Q[z,y] is a homogeneous polynomial of degree one.
Denote by & = adz + bdy the dehomogeneization of T*(Q) with respect to z. Then,

(90) = (@,b) NQ[z]  (@,b,A) N Q[z] = (f).
If
Sing(Q) N L # 0 and Sing(Q) ¢ Lo,
and all the singularities of T*(Q)) are outside Lo, then f # 1. Moreover, f is
a proper factor of the polynomial gy of Theorem 3.1. In particular, gy cannot
be irreducible. However, g is always a factor of the polynomial R computed by
Algorithm 3.3, so the algorithm will fail in this case.

As one might expect, the number of foliations for which the algorithm fails is
proportional to the number of vanishing coefficients in a and b, as the next table
shows. The data were obtained with a procedure that tests 50 randomly generated
foliations of degree 3 of each type. In performing this test we used the SINGULAR
function sparsepoly which randomly chooses both, the coefficients that are going
to be zero, and the size of the nonzero coefficients. This function also allows the
user to choose the percentage of vanishing coefficients in the polynomial that it will
generate. The dense polynomials were obtained with the help of the same function,
by setting this percentage to zero. See [20] for more details about this function.

Number of coefficients equal to zero | Percentage of failures
0% 0%
20% 16%
30% 22%
50% 56%
70% 82%
80% 96%
90% 99%

TABLE 3. Percentage of failures of Algorithm 3.3 against sparseness

The second algorithm is harder to test. Indeed, as we have seen, almost all
pairs of dense polynomials will give an affirmative result when put through the first
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algorithm. Thus we turned to sparse polynomials. Unfortunately, most pairs that
fail the first algorithm will also fail the second. Moreover, the few that did not had
coefficients so large that SINGULAR had difficulty dealing with them.

We got around this problem by writing a program that generates 1-forms for
which the polynomial R(z) (of Step 3 of Algorithm 3.3) is a reducible polynomial
in x. More precisely, let

(5.2) a=—yz" +g(x) and b=2z2""" — f(z,y),

where f(x,y) is a polynomial of degree n in Q[z,y] and g a polynomial of degree
n in Q[z]. Suppose also that f(0,y) # 0. If a = 0 then y = g(x)/2™. Taking this
into the equation b = 0, we find that p = 0, where

(5.3) p= gl _ x”zf (w, g(x)) .

In

The program generates a reducible polynomial p of degree n? +n + 1 and, by
comparing coefficients with (5.3) finds a and b. The resulting foliation, which fails
Algorithm 3.3 by construction, is then tested with Algorithm 4.3. The program
proceeds as follows:

Algorithm 5.1. Given n and a partition 2 < dy < dy < --- < d; of n> +n+1,
the algorithm returns either a 1-form adz + bdy such that Algorithm 3.3 fails at w,
while Algorithm 4.3 is successful, or failure.

Step 1: Find distinct primes p1,...,p;.
Step 2: Construct monic polynomials f1,..., fi, of the form

dj—1
fi=a%+ )" apia’ +p;,
i=1
where the ¢; are integers generated at random.
Step 3: Let F'= f1--- f.
Step 4: Comparing coefficients, as explained above, find (if they exist) poly-
nomials a and b such that

(a,0) N Qlz] = (F).

If a and b cannot be found return failure.
Step 5: Apply Algorithm 4.8 to the foliation defined by adx + bdy.
Step 6: If the algorithm fails return failure, otherwise return a and b.

Two steps of this algorithm need some amplification. First, the polynomials f;
constructed in Step 2 are irreducible by Eisenstein’s criterion. Therefore, all the
factors of F' = f; --- f; have multiplicity one.

Second, the algorithm assumes, for the sake of simplicity, that (in the notation of
(5.2)) g = 1 and f is a dense polynomial of degree n with undetermined coefficients.
A simple calculation shows that, in this case, the polynomial p obtained in (5.3)
is not dense. Moreover, this would be the case even if we had not assumed that
g = 1. For this reason we limited our tests to two cases:

e n = 2 with the partitions 3 <4 and 2 <2 <3 of 7, and
e n = 3 with the partitions 3 <4 <6 and 6 < 7 of 13.
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When n = 2, we chose

(23 + c1p12? + p2)(z* + dipaa® + dopd + p2)  for the partition 3 <4
(22 + p1)(2? + p2) (2 + c1p3x? + p3) for the partition 2 <2 <3,

and, when n = 3,

(2% + p1)(z* + p2)(2® + c1psz® + p3) for the partition 3<4<6

F =
(2% + e1pra® + p1) (27 + c1p2a® + copax® + py)  for the partition 6 <7,

We ran the algorithm 100 times for each of the partitions listed above, and it
never reported a failure. The average time required to construct an example is
given in table 4.

Partition | Average time
3<4 125 ms

2<2<3 500 ms

3<4<6 1 min
6<7 10s

TABLE 4. Algorithm 5.1

As the experimental tests show, Algorithm 3.3 will prove that any sufficiently
generic 1-form of type (5.1) in Q[z, y] gives rise to a foliation of P? without algebraic
solutions. Moreover, the algorithm is very efficient even for foliations of a fairly large
degree. Algorithm 4.3, on the other hand, suffers from serious problems caused by
coeflicient explosion. Indeed it will almost certainly fail to return any result on
randomly generated forms for which Algorithm 3.3 fails. Despite that we were able
to construct many examples on which the first algorithm fails, while the second
successfully detects that the foliation does not have any algebraic solutions.

REFERENCES

[1] W. W. Adams and P. Loustaunau, An introduction to Grébner bases, Graduate Studies in
Mathematics vol. 3, American Mathematical Society, Providence (1994).

[2] P. Baum and R. Bott, Singularities of holomorphic foliations, J. Diff. Geo., 7 (1972), 279-342.

[3] M. Brunella, Birational geometry of foliations, First Latin American Congress of Mathemati-
cians, IMPA, Rio de Janeiro (2000).

[4] C. Camacho and L. H. de Figueiredo, The dynamics of the Jouanolou foliation on the complex
projective 2-space, Ergodic Theory Dynam. Systems, 21 (2001), no. 3, 757-766.

[5] M. N. Carnicer, The Poincaré problem in the nondicritical case, Ann. Math., 140(1994),
289-294.

[6] D. Cerveau and A. Lins Neto, Holomorphic foliations in CP(2) having an invariant algebraic
curve, Ann. Sc. de I'Institute Fourier, 41, (1991), 883-903.

[7] S. C. Coutinho and B. F. M. Ribeiro, On holomorphic foliations without algebraic solutions,
Experimental Mathematics 10 (2001), 529-536.

[8] S. C. Coutinho, Indecomposable non-holonomic D-modules in dimension 2, Proc. Edinburgh
Math. Soc. 46 (2003), 341-355.

[9] S. C. Coutinho, Non-holonomic irreducible D-modules over complete intersections, Proceed-
ings Amer. Math. Soc. 131 (2003), 83-86.

[10] D. Cox, J. Little and D. O’Shea, Ideals, varieties and algorithms, Undergraduate Texts in
Mathematics, Springer (1992).

[11] G. Darboux, Mémoire sur les équations différentielles algébriques du I° ordre et du premier
degré, Bull. des Sc. Math. (Mélanges) (1878), 60-96, 123-144, 151-200.



16 S. C. COUTINHO AND L. MENASCHE SCHECHTER

[12] J. C. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional
Grobner bases by change of ordering, J. Symb. Comp. 16 (1993), 329-344.

[13] W. Fulton, Algebraic curves: an introduction to algebraic geometry, W. A. Benjamin (1969).

[14] J. P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., 708, Springer-Verlag
(1979).

[15] M. Kreuzer and L. Robbiano, Computational commutative algebra 1, Springer (2000).

[16] A. Lins Neto and B. Azevedo Scdrdua, Folheagées Algébricas Complezas, 21° Coléquio
Brasileiro de Matemética, IMPA, (1997).

[17] Y.-K. Man and M. A. H. MacCallum, A rational approach to the Prelle-Singer algorithm, J.
Symb. Computation 24 (1997), 31-43.

(18] H. Poincaré, Sur l'integration algébrique des équations differentielles du 1°* ordre, Rendiconti
del Circolo Matematico di Palermo, 11 (1891), 193-239. Reprinted in his Oeuwvres, t. III, p.
35-58.

[19] I. R. Shafarevich, Basic algebraic geometry, Springer, Berlin-Heidelberg (1977)

[20] G.-M. Greuel, G. Pfister, and H. Schénemann, Singular version 1.2 User Manual, In Reports
On Computer Algebra, number 21, Centre for Algebra, University of Kaiserslautern, June
1998, http://www.mathematik.uni-kl.de/"zca/Singular

[21] M. G. Soares, On algebraic sets invariant by one-dimensional foliations of CP(8), Ann. Inst.
Fourier 43 (1993), 143-162.

[22] T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités
Mathématiques, Hermann, Paris (1998).

DEPARTAMENTO DE CIENCIA DA COMPUTAGAO, INSTITUTO DE MATEMATICA, UNIVERSIDADE
FEDERAL DO RIO DE JANEIRO, P.O. Box 68530, 21945-970 Ri0 DE JANEIRO, RJ, BRAZIL.

PROGRAMA DE ENGENHARIA DE SISTEMAS E ComMPUTAGAO, COPPE, UFRJ, PO Box 68511,
21941-972, R10 DE JANEIRO, RJ, BRAZIL.

E-mail address: collier@impa.br

URL: http://www.dcc.ufrj.br/"collier

DEPARTAMENTO DE CIENCIA DA COMPUTAGAO, INSTITUTO DE MATEMATICA, UNIVERSIDADE
FEDERAL DO Ri10 DE JANEIRO, P.O. Box 68530, 21945-970 R10 DE JANEIRO, RJ, BRAZIL.
E-mail address: luisms@superig.com.br



