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Abstract. We present two algorithms that can be used to check whether a

given holomorphic foliation of the projective plane has an algebraic solution,

and discuss the performance of their implementations in the computer algebra
system Singular.

1. Introduction

The study of algebraic solutions of differential equations of the first order and
the first degree over the complex projective plane P2 goes back to the work of G.
Darboux in the 1870s. In [11] Darboux showed that if an equation of this kind has
enough algebraic solutions then it must have a first integral. In 1891, Poincaré [18]
pointed out that in order to find an explicit algebraic solution to such an equation
it would be enough to find an upper bound on the degree of the solution in terms
of the degree of the polynomials that define the equation. Indeed, if the equation is
defined by polynomials of degree less than or equal to 2, then it always has solutions
of degree 1, a fact already known to Darboux.

In the twentieth century the results of Darboux and Poincaré were reworked as
part of the theory of holomorphic foliations. The search for bounds on the degree
of the solution is now known as Poincaré’s Problem, and many such bounds have
been found; see [6], [5] for example. However, these turned out to be of limited use
in solving differential equations in view of the following result of J. P. Jouanolou
[14, theoreme 1.1, p. 158].

Theorem 1.1. A generic foliation of P2 of degree greater than or equal to 2 does
not have any algebraic solutions.

For the definition of the degree of a foliation see section 2. As part of the
proof of this theorem, Jouanolou gave an explicit example of a family of foliations
with no algebraic solution. However, although Theorem 1.1 tells us that most
foliations do not have algebraic solutions, very few concrete examples (say, with
rational coefficients) are known. Moreover, most of these examples are variations
on Jouanolou’s, and make use of the fact that the singular set of the foliation has
a rather large symmetry group. However, a greater variety of concrete examples
would help in the study of several problems in the theory of holomorphic foliations.
Foremost among these is the problem of the existence of nontrivial minimal sets,
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which has already been approached from a computational point of view in [4].
Foliations without algebraic solutions have also been used to construct families
of nonholonomic D-modules, see [8] and [9]. Nevertheless, little is known of the
properties of these modules, in part because there are so few concrete examples to
be used in exploratory concrete calculations.

A more systematic approach to finding examples of holomorphic foliations with-
out algebraic solutions consists in generating a random foliation of a given degree,
and using a computer to check that it does not have an algebraic solution of degree
less than or equal to the bound provided by a solution of Poincaré’s Problem. This
was actually successfully implemented in [7]. However, the computations required
in this approach are extremely costly, so that it is in practice limited to foliations
of degree 2.

One way to improve the algorithmic approach is to settle for a procedure that
will either prove that the foliation does not have any algebraic solutions, or return
I don’t know. This is exactly what we do in this paper. In fact, we propose
two such algorithms. The reason why these algorithms are expected to be often
successful is the well-known fact that a generic polynomial in one variable with
rational coefficients is irreducible over Q. As will be shown in a forthcoming paper,
a similar strategy can be used to construct families of foliations without algebraic
solutions that are far more general than Jouanolou’s.

The plan of the paper is as follows. In section 2 we introduce some basic facts
concerning foliations of the complex plane in a suitable way for the applications in
later sections. The two algorithms are described and proved to be correct in sections
3 and 4. Finally, in section 5 we discuss our implementations of the algorithms in
the computer algebra system Singular [20], and analyse their performance.

2. Foliations of the projective plane

In this section we discuss the basic facts about foliations of the complex projective
plane P2 in a way that is suitable for the applications of the forthcoming sections.

Let n ≥ 0 be an integer, and denote by x, y and z the homogeneous coordinates
of the complex projective plane P2. A holomorphic foliation F of P2 is defined by
a 1-form Ω = Adx + Bdy + Cdz, where A, B and C are homogeneous polynomials
of degree n + 1 that satisfy the identity xA + yB + zC = 0. A singularity of F is
a common zero of A, B and C. We denote the set of singularities of F by Sing(F)
or Sing(Ω). If Sing(F) is finite then we say that F is saturated.

Let Uz be the open set of P2 defined by z 6= 0 and let ω be the dehomogeneization
of Ω with respect to z. Restricting the foliation of P2 defined by Ω to Uz, we obtain
the foliation of C2 defined by ω. Conversely, if πz : Uz → C2 is the map given by
πz[x : y : z] = (x/z, y/z), then Ω = zkπ∗z(ω), where k is chosen so as to clear the
poles of π∗z(ω).

From now on we deal only with a foliation of C2 defined by a 1-from ω =
adx + bdy, where a, b ∈ C[x, y]. Note that if Ω is as above, then

a(x, y) = A(x, y, 1) and b(x, y) = B(x, y, 1).

Moreover, we assume that ω is saturated, which means gcd(a, b) = 1. A singularity
of ω is a common zero of a and b. The set of all the singularities of ω is denoted
by Sing(ω). It follows from Bézout’s theorem that this is a finite set, because we
are assuming that ω is saturated. Although Sing(ω) need not be equal to Sing(Ω),
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the two sets coincide if Sing(Ω) does not intersect the line at infinity L∞. Indeed,
in this case, every zero of A and B is also a zero of C because xA + yB + zC = 0.
From now on, we assume that the coordinates of P2 have been chosen so that
Sing(Ω) ∩ L∞ = ∅.

As a consequence of this choice of coordinates, we have that the polynomial
xA(x, y, 0) + yB(x, y, 0) is identically zero, and that A(x, y, 0) and B(x, y, 0) are
nonzero homogeneous polynomials. Since A(x, y, 0) and B(x, y, 0) are equal to the
leading homogeneous components of a and b, we conclude that

a = yh + a0 and b = −xh + b0,

where a0 and b0 are polynomials of degree less than or equal to n, and h is homo-
geneous of degree n. In particular,

deg(a) = deg(b) = n + 1.

The number
n = deg(a)− 1 = deg(b)− 1,

is called the degree of ω. We also say that n is the degree of the foliation F defined
by ω on P2.

Let f ∈ C[x, y] be a reduced (square free) polynomial, and consider the algebraic
curve C defined by the vanishing of f . We say that C is invariant under the
foliation F , if C is tangent to the vector field dual to ω at every point outside
Sing(C) ∪ Sing(ω). This is equivalent to the existence of a polynomial 2-form η
such that

ω ∧ df = fη.

The curve C is also called an algebraic solution of F (or ω). By abuse of notation
we also talk of f being invariant under ω. The next proposition characterizes the
kind of invariant curve that we can expect a 1-form ω to have if its coefficients are
rational numbers. The proof given here is based on [17, proposition 3.3, p. 36].

Proposition 2.1. If ω has an algebraic solution, then there is a reduced polynomial
with rational coefficients which is invariant under ω.

Proof. Suppose that ω has an algebraic solution of degree k ≥ 1. Let

f =
∑

i+j≤k

c1
ijx

iyj and g =
∑

s+t≤n−1

c2
stx

syt

be polynomials in x and y, with undetermined coefficients. Let

C = {c1
ij , c

2
st : 0 ≤ i + j ≤ k and 0 ≤ s + t ≤ n− 1}

and denote by N the number of elements of C. Consider the ideal J generated by
the coefficients of the monomials in x and y on the left hand side of

(2.1) a
∂f

∂x
+ b

∂f

∂y
− gf = 0.

J is an ideal of the polynomial ring Q[C].
Since ω has a solution of degree k, then it has a solution for which c1

i0j0
6= 0

for some choice of integers i0, j0 ≥ 0 with i0 + j0 = k. However, the polynomials
of J are homogeneous on the c1s. So we can assume, without loss of generality,
that c1

i0j0
= 1; which implies that the constant polynomial is not a solution of

J0 = J |c1
i0j0

=1.
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Now consider the variety X in CN−1 defined by J0. Suppose, first, that dim(X) =
d > 0. Then by [19, Theorem 10, p. 52], there exists a finite surjective map

π : X → Cd.

Let q ∈ Qd, and consider the fibre π−1(q). Since π is onto, it follows that 0 <
]π−1(q) < ∞. Moreover, since the polynomials that define π−1(q) have rational
coefficients, then π−1(q) ⊂ QN−1

. In particular, the coordinates of the points of
π−1(q) are algebraic numbers. Therefore, these coordinates must all be contained
in a finite normal extension K of Q. Thus, by the definition of X, a point of π−1(q)
corresponds to a pair of polynomials f, g ∈ K[x, y] that satisfy (2.1).

Suppose now that dim(X) = 0. In this case, applying the same argument to X

itself, instead of π−1(q), we conclude that there exist polynomials f, g ∈ K[x, y]
that satisfy (2.1), where K is a normal extension of Q.

In either case, let G be the Galois group of K over Q. Since a and b have
rational coefficients, it follows that σ(f) and σ(g) also satisfy (2.1) for all σ ∈ G.
Therefore, F =

∏
σ∈G σ(f) is also a solution of (2.1). However, F is invariant

under G, hence its coefficients must be rational. Thus, the squarefree part of F is
a reduced polynomial with rational coefficients that is an algebraic solution of ω,
which proves the proposition. �

We now turn to the definition of the characteristic exponents, which will play
a very important rôle in both of our algorithms. But, first, we fix the hypotheses
that will be in force for the remainder of the section:

Hypotheses 2.2. Take F to be a foliation of P2 determined by a 1-form ω =
adx + bdy, where a, b ∈ Q[x, y], and assume that Sing(F) ∩ L∞ = ∅.

Let p ∈ Sing(ω). The 1-jet at p of the vector field dual to ω is

Jω(p) =
[

∂b/∂x ∂b/∂y
−∂a/∂x −∂a/∂y

]
We say that F is nondegenerate at p if det(Jω(p)) 6= 0. In this case, the eigenvalues
λ1 and λ2 of Jω(p) are both nonzero, and the quotient λ1/λ2 and its reciprocal are
the characteristic exponents of ω at p. Let

ρω(p) =
trace(Jω(p))2

det(Jω(p))
.

An easy computation shows that ρω(p) is related to the characteristic exponents
by the formula

(2.2) ρω(p) =
λ1

λ2
+

λ2

λ1
+ 2.

The set of all complex numbers that are characteristic exponents of F at one of
its singularities will be denoted by Exp(F) or Exp(ω). For a proof of the next
proposition see [14, Proposition 4.1, p. 126], [21, Lemma 5.1, p. 156] and [6,
Theorem 1, p. 891].

Proposition 2.3. If C is a reduced algebraic curve that is invariant under ω, then
Sing(ω) ∩ C 6= ∅. Moreover, if Exp(ω) ∩ Q = ∅ then all the singularities of the
projectivization C of C are nodes and

deg(C) ≤ deg(F) + 2.
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Given a singular point p ∈ C2 of ω, let Vp,λ be the eigenspace of Jω(p) with
respect to the eigenvalue λ. If C is a reduced algebraic curve invariant under ω,
and ω is nondegenerate at all p ∈ Sing(ω), set

Exp(ω, C) = {λ1/λ2 ∈ Exp(ω) : Vp,λ2 ∩ TpC 6= 0 for some p ∈ Sing(ω) ∩ C}.
The next theorem is an immediate consequence of the Camacho-Sad Index The-

orem; see [3, Theorem 2, p. 37].

Theorem 2.4. Let C be a reduced algebraic curve of degree d invariant under ω.
If all the singularities of C are nodes, and ω is nondegenerate at all p ∈ Sing(ω),
then ∑

q∈Exp(ω,C)

q = d2 − 2δ

where δ is the number of nodes of C.

The final result of this section is a corollary of a famous theorem of Baum and
Bott [2, Theorem 1, p. 280], although the first half of the result was originally
proved by Darboux [11, p.84]. For a direct proof in this special case see [22, Theorem
1.1, p. 150] or [3, Theorem 1, p. 34]. Before we state the theorem, we must
introduce some notation. If p is a singularity of ω, define the multiplicity µp(ω) of
ω at a singularity p to be the intersection number of a and b at p. In particular,
µp(ω) = 1 if and only if ω is nondegenerate at p.

Theorem 2.5. Let ω be a 1-form of degree n that satisfies Sing(ω)∩L∞ = ∅, then

(2.3)
∑

p∈Sing(ω)

µp(ω) = n2 + n + 1.

Moreover, if ω is nondegenerate at all of its singular points, then

(2.4)
∑

p∈Sing(ω)

ρω(p) = (n + 2)2.

The following result is an immediate consequence of the theorem, and will be
useful in the coming sections.

Corollary 2.6. Let ω be a 1-form of degree n that satisfies Sing(ω)∩L∞ = ∅, then
ω has n2 + n + 1 singularities, counted with multiplicity, all of which belong to the
open set z 6= 0. Conversely, if ω has n2 + n + 1 distinct singularities at z 6= 0 then
Sing(ω) ∩ L∞ = ∅.

3. The first algorithm

Let a and b be polynomials of degree n + 1 in Q[x, y], and consider the 1-form
ω = adx + bdy. Let g0(x) be a generator of the ideal (a, b)∩Q[x]. Suppose that g0

is irreducible over Q of degree n2 +n+1. Note that these conditions imply that the
foliation induced by ω has n2 + n + 1 distinct singular points, all of which belong
to the open set z 6= 0. Moreover, L∞ cannot be invariant under ω by Proposition
2.3. Therefore, xan+1 + ybn+1 = 0, as we have seen in section 2. The proof of the
next theorem is inspired on that of [6, Theorem, p. 90].

Theorem 3.1. Let F be a foliation of P2 determined by a 1-form ω = adx + bdy,
where a, b ∈ Q[x, y]. Assume that:

(1) Sing(F) ∩ L∞ = ∅;
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(2) F has degree n ≥ 2;
(3) g0 is the generator of the ideal (a, b) ∩Q[x].

If g0 is irreducible over Q of degree n2 + n + 1, then F does not have any algebraic
solutions in P2.

Proof. Since g0 is irreducible, it follows that

Q[x]/(g0) ↪→ Q[x, y]/
√

(a, b).

But,

n2 + n + 1 = dimQ(Q[x]/(g0)) ≤ dimQ(Q[x, y]/
√

(a, b)) ≤ n2 + n + 1,

so that both algebras have dimension n2 + n + 1 over Q. Therefore,√
(a, b) = (g0, y − g1),

where g1 is a polynomial in Q[x] of degree at most deg(g0)−1. The set {g0, y− g1}
is a reduced Gröbner basis of

√
(a, b) for the lexicographical order with y > x. In

particular, the singularities of ω are of the form (x0, g1(x0)), for some complex root
x0 of g0.

Let G be the Galois group of g0 over Q. Since g0 is irreducible over Q, it follows
that G acts transitively on the set of roots of g0. Hence, it must also act transitively
on the set Sing(ω), by

σ(x0, g1(x0)) = (σ(x0), g1(σ(x0))),

for σ ∈ G.
Assume now that ω has an algebraic solution. Then, by Proposition 2.1 there

exists a reduced polynomial f ∈ Q[x, y] that is invariant under ω. Since f and ω
are both stable under G, it follows from Proposition 2.3 that

Sing(ω) ⊂ Z(f) = C.

We must analise two cases.

First case: C is nonsingular at every point of Sing(ω).
We have, by hypothesis, that C is nonsingular at every singular point of ω. But,

being invariant under ω, the curve C cannot be singular anywhere else. Since F
does not have singularities at L∞, it follows that the projectivization C of C is
a nonsingular curve of P2. Hence, by [14, Proposition 4.1, p. 126] there exists a
homogeneous polynomial h, and a homogeneous 1-form η such that

(3.1) Ω = hdF + Fη,

where F and Ω denote the homogeneizations of f and ω with respect to z. Taking
into account that the coefficients of Ω have degree n + 1, we see that deg(h) +
deg(F ) = n + 2.

However,
Sing(Ω) = Sing(ω) ⊆ Z(F ) = C,

which is the projectivization of C. Therefore, by (3.1), hdF vanishes at every
singularity p of ω. But, C is a nonsingular curve, so that dF (p) 6= 0 at every p ∈ C.
We conclude that h(p) = 0 for every p ∈ Sing(Ω). In particular,

#(C ∩ Z(h)) ≥ n2 + n + 1.
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However, by Bézout’s Theorem

#(C ∩ Z(h)) = deg(F ) deg(h) = deg(F )(n + 2− deg(F )).

Moreover, deg(F ) ≤ n + 1 by [14, Proposition 4.1, p. 126], so that

deg(F )(n + 2− deg(F )) < n2 + n + 1,

whenever deg(F ) ≥ 2. Thus, deg(F ) = 1. But all the singularities of ω are also
zeroes of ah, the homogeneization of the polynomial a with respect to z. Since ah

has degree n + 1, it follows by Bézout’s Theorem that

n2 + n + 1 ≤ deg(ah) deg(F ) = deg(ah) = n + 1,

a contradiction. Therefore, ω cannot have a nonsingular invariant curve.

Second case: C is singular at some point p0 ∈ Sing(ω).
Since f is singular at p0 ∈ Sing(ω), it follows that (∇f)(p0) = 0. But G acts

transitively on Sing(ω), and f has rational coefficients, so that

0 = σ((∇f)(p0)) = (∇f)(σ(p0)).

Therefore, C is singular at every singularity of ω.
We now turn to some properties of ω. We already know that ω has n2 + n + 1

distinct singularities. Thus, by Theorem 2.5,

µp(ω) = 1, for every p ∈ Sing(ω).

In particular, ω is nondegenerate at every one of its singularities.
Next, we want to show that ω does not have any rational characteristic expo-

nents. In order to do this, consider the set

R = {ρω(p) : p ∈ Sing(ω)}.
If ω has a rational exponent, then R ∩ Q 6= ∅. However, G acts transitively on
Sing(ω) and since

σ(ρω(p)) = ρω(σ(p)),
it follows that σ acts transitively on R. Thus, R ∩ Q 6= ∅, implies that all the
elements of R are rational numbers. But rational numbers are stable under G, so
that R = {q} ⊂ Q. Hence, by Theorem 2.5, we conclude that

(n2 + n + 1)q = (n + 2)2.

In particular, if e and 1/e are the corresponding characteristic exponents, we find
that

e =
−n2 + 2n + 2
2(n2 + n + 1)

+
n(n + 2)

2(n2 + n + 1)
· ı
√

3.

But this is not a rational number. Therefore, Exp(ω) ∩Q = ∅.
Thus, by Proposition 2.3, all the singularities of C must be nodes. Since C is

reduced, it follows from [13, Problem 5-25, p.118] and the inequality of Proposition
2.3 that

n2 + n + 1 =
∑

p∈Sing(ω)

mp(mp − 1)
2

≤ n2 + 3n + 2
2

,

where mp is the multiplicity of C at p. But this inequality implies that n ≤ 1,
which is a contradiction. �

We will isolate a consequence of the last part of the proof of Theorem 3.1 for
future reference.
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Corollary 3.2. Let ω be a saturated 1-form and let C be a reduced algebraic curve
of C2. If

• Sing(ω) ⊆ Sing(C), and
• Exp(ω) ∩Q = ∅,

then C cannot be invariant under ω.

These results provides a strategy to check that a given saturated 1-form of degree
n ≥ 1, say ω = adx + bdy, does not have any algebraic invariant curves. All we
have to do is check that L∞ is not invariant under ω, and that the generator g0 of
(a, b) ∩ Q[x, y] is irreducible of degree n2 + n + 1. The desired conclusion follows
from Theorem 3.1.

The most obvious way to implement this strategy is to compute a Gröbner basis
for (a, b) with respect to the lexicographical order with x < y. The polynomial g0

is one of the elements of this basis. The irreducibility of g0 can be checked using
a factorization algorithm. Moreover, since ω is saturated, the ideal generated by a
and b is zero dimensional. Thus we can improve the performance of the procedure
using the FGLM algorithm to compute the Gröbner basis. [12], [1, exercise 2.2.8,
p. 68]. However, in practice, there is an altogether better approach which consists
in using resultants, instead of Gröbner basis, as shown in the following algorithm.

Algorithm 3.3. Given a 1-form ω = adx+bdy, where a, b ∈ Q[x, y] are polynomials
of degree n + 1 ≥ 3, the algorithm returns one of four messages: the foliation

is not saturated, the line at infinity is an algebraic solution, there
are no algebraic solutions, or do not know.

Step 1: If gcd(a, b) 6= 1, stop and return the foliation is not satura-

ted.
Step 2: If the polynomial xan+1 + ybn+1 is nonzero, stop and return the

line at infinity is an algebraic solution.
Step 3: Compute the resultant R(x) of a and b with respect to y.
Step 4: If R is reducible or deg(R) < n2 + n + 1, stop and return do not

know.
Step 5: Stop and return there are no algebraic solutions.

Proof. Steps 1 and 2 check that ω is saturated, and that L∞ is not invariant under
ω. In particular, this implies that ω induces a foliation of degree n in P2. Since

R ∈ (a, b) ∩Q[x] = (g0),

we conclude from step 4 that R = g0. The result now follows from Theorem 3.1. �

It may be worth pointing out that this algorithm is not in any way weaker than
the one originally proposed. After all, if the generator g0 of (a, b)∩Q[x] is irreducible
of degree n2 + n + 1, then it must be equal to the resultant R. This follows from
the fact that every x-coordinate of a singular point of ω must be a root of R, which
is a polynomial of degree less than or equal to n2 + n + 1.



HOLOMORPHIC FOLIATION 9

4. The second algorithm

The algorithm discussed in the previous section will work only if the x coordinates
of the singular points of the 1-form ω are roots of a polynomial equation that is
irreducible over Q. Although this condition is expected to hold generically, it fails
often when the polynomials that define ω are sparse, as shown in section 5. However,
there is another algorithm, based on Theorem 2.4 that might work even in this case.

Let ω be a 1-form with rational coefficients. Assume that the hypotheses of 2.2
are in force, and that ω is nondegenerate at every one of its singularities. Consider
the ideal

L = (a, b, tdet(Jω)− trace(Jω)2)
of Q[x, y, t], and let q be the generator of L ∩Q[t]. By equation (2.2), the charac-
teristic exponents of ω must all be roots of the polynomial

q̂ = u(n2+n+1)q

(
u +

1
u

+ 2
)

.

The algorithm depends on the following result.

Proposition 4.1. Let f ∈ Q[x, y] be a reduced polynomial and denote by C the
curve defined by f = 0. Assume that:

(1) ω is nondegenerate;
(2) q is reduced of degree n2 + n + 1,
(3) q does not have any rational roots, and
(4) C is invariant under ω.

Then, there exists a subset S of the set of irreducible factors of q̂ over Q such that
Exp(ω, C) is the set of all roots of Φ =

∏
φ∈S φ.

Proof. First of all, note that if q is reduced of degree n2 + n + 1 with no rational
roots, then q̂ is reduced of degree 2(n2 + n + 1), and also has no rational roots.
These are the hypotheses on q̂ that are used in the proof of the proposition.

Let j = 1, 2. Denote by Mj the ideal of 2× 2 minors of the matrix[
Jω − vjI
∇f

]
,

and by ∆j the determinant of Jω − vjI. Consider the ideals

I1 = (a, b, ∆1,∆2, v1 − uv2, (v1 − v2)w − 1) and I2 = I1 + M2

of Q[x, y, v1, v2, u, w], and let γ1 be the generator of
√

I1 ∩Q[u].
If λ1 6= λ2 are two eigenvalues of the 1-jet of ω at the singularity (x0, y0), then

u0 = λ1/λ2 6= 1 is a characteristic exponent of ω and

(x0, y0, λ1, λ2, u0, 1/(λ1 − λ2)) ∈ Z(I1),

the set of zeroes of I1 in C6. By [10, Lemma 1, Chapter 3, section 2, p. 121], every
element of Exp(ω) is a root of γ1. Thus, q̂ divides γ1. Hence,

deg(q̂) ≤ deg(γ1) ≤ dim(Q[x, y, v1, v2, u, w]/
√

I1) ≤ 2(n2 + n + 1).

It follows, from the hypothesis on q̂, that γ1 = q̂, and that

deg(γ1) = dim(Q[x, y, v1, v2, u, w]/
√

I1) = 2(n2 + n + 1).

In particular, by [15, Theorem 3.7.23, p. 255]
√

I1 is in general position with respect
to u (or normal u-position in the terminology of [15]).
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We must now identify the zeroes of I2. Suppose that

(x0, y0, λ1, λ2, u0, w0) ∈ Z(I2).

Then,
• (x0, y0) ∈ Sing(ω),
• u0 = λ1/λ2,
• λ1 6= λ2,
• λ1 is an eigenvalue of ω at (x0, y0), and
• w0 = 1/(λ1 − λ2).

We must still investigate the condition imposed by the ideal of minors M2. Two
cases can occur. If ∇f(x0, y0) 6= 0, then the vanishing of M2 implies that there
exists an eigenvector v 6= 0 of λ2, that is tangent to C. On the other hand, if
∇f(x0, y0) = 0 then f is singular at (x0, y0), so that TpC = C2. In either case,
u0 ∈ Exp(ω, C). Since the converse is clearly true, we conclude that

u0 is a u-coordinate of a point in Z(I2) if and only if u0 ∈ Exp(ω, C).
Since I1 ⊆ I2, and

√
I1 is in general position with respect to u, it follows that

so is
√

I2. Therefore, by [15, Theorem 3.7.25], a complex number is a u-coordinate
of a point of Z(I2) if and only if it is a root of the generator γ2 of

√
I2 ∩ Q[u].

But, I1 ⊆ I2 implies that γ2 divides γ1 = q̂. Since q̂ is reduced, the theorem is
proved. �

The strategy now consists in showing that Theorem 2.4 cannot be satisfied by
any curve with rational coefficients. However, before we do this we must determine
the number of nodes of a curve invariant under ω. Suppose that C, q̂ and Φ are as
in Proposition 4.1. If C is singular then, by Proposition 2.3, all of its singularities
are nodes. Let δ be the number of nodes of C. Given a polynomial φ(u), in one
variable, let

φ̃ = udeg(φ)φ(1/u).

Corollary 4.2. We have that deg(gcd(Φ, Φ̃)) = 2δ.

Proof. Let α be a characteristic exponent of ω at p ∈ Sing(ω). Then, p is a node
of C if and only if both α and 1/α belong to Exp(ω, C). But this is equivalent to
α and 1/α being roots of Φ. Therefore, the number of roots of Φ whose reciprocal
is also a root of Φ is exactly 2δ.

On the other hand, α is a root of Φ if and only if 1/α is a root of Φ̃. Therefore,
α is a root of d = gcd(Φ, Φ̃) if and only if both α and 1/α are roots of Φ. Of course,
in this case 1/α is also a root of d. From this remark, and the previous paragraph,
we conclude that deg(d) = 2δ. �

We are now ready to give a step by step description of the second algorithm.

Algorithm 4.3. Given a 1-form ω = adx+bdy, where a, b ∈ Q[x, y] are polynomials
of degree n + 1 ≥ 3, the algorithm returns one of four messages: the foliation

is not saturated, the line at infinity is an algebraic solution, there
are no algebraic solutions, or do not know.

Step 1: If gcd(a, b) 6= 1, stop and return the foliation is not satura-

ted.
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Step 2: If the polynomial xan+1 + ybn+1 is nonzero, stop and return the

line at infinity is an algebraic solution.
Step 3: Compute the generator q of L ∩Q[t], where

L = (a, b, tdet(Jω)− trace(Jω)2)

Step 4: If q = 0 or deg(q) < n2 + n + 1 stop and return do not know.
Step 5: If gcd(q, dq/dt) 6= 1 stop and return do not know.
Step 6: Let

q̂ = u(n2+n+1)q

(
u +

1
u

+ 2
)

.

Step 7: Compute the set T of factors of q̂ over Q.
Step 8: If T contains a polynomial of degree 1, stop and return do not know.
Step 9: For every proper subset S ( T do:

Find the product ΦS of all polynomials in S.
Let

Φ̃S = udeg(ΦS)ΦS(1/u).

Compute the coefficients cm and cm−1 of ΦS, where m = deg(ΦS),
and let

β(S) = cm−1/cm + deg(gcd(ΦS , Φ̃S))

If β(S) is an integer and a perfect square, stop and return do not

know.
Step 10: Return there are no algebraic solutions.

Proof. As in Algorithm 3.3, steps 1 and 2 merely check that the foliation is sat-
urated, and that the line at infinity is not invariant under ω. In order to apply
Proposition 4.1, we must first compute the polynomial q̂ (steps 3 and 6), and check
that it satisfies the assumptions of the proposition (steps 4, 5 and 8). Since we
would have to factor q̂ anyway, we prefered to check if it, rather than q, had any
rational roots. Note that if ω has a degenerate singularity then L ∩Q[t] = {0}, so
that q = 0. If this is the case the program will stop in Step 4.

Let us now turn to step 9. Suppose that ω has an invariant algebraic curve.
Thus, by Proposition 2.1, it must have an invariant algebraic curve C with rational
coefficients. But Proposition 4.1 then implies that Exp(ω, C) is equal to the set of
roots of

ΦS =
∏
φ∈S

φ =
m∑

j=0

cju
j ,

where S is a subset of the set T of all factors of q̂. Note that we may assume that S
is a proper subset of T , for otherwise C would be singular at every point of Sing(ω),
which has been ruled out by Corollary 3.2. However, since the characteristic ex-
ponents of ω are not rational numbers, it follows from Theorem 2.4 and Corollary
4.2 that the sum of the roots of ΦS is equal to deg(C)2 − deg(gcd(ΦS , Φ̃S)). By
Newton’s formula this sum is also equal to cm−1/cm. Hence,

β(S) = cm−1/cm + deg(gcd(ΦS , Φ̃S))

must be an integer and a perfect square. Step 9 checks if this assumption is realised
for some proper subset S of T . If it is not, then ω cannot have any invariant algebraic
curves, and the proof of the algorithm is complete. �
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Even when this algorithm fails, it provides information on the possible solutions
of ω. Let C be a curve with rational coefficients that is invariant under ω. Then,
deg(C) must be an integer in the set {

√
β(S) : S ( T}. Moreover, the roots of

the generator of (L,ΦS) ∩ Q[x] are the x coordinates of the points of Exp(ω, C).
Once one has this information, it is possible to use the method of undetermined
coefficients to find the actual solution.

5. Experimental tests

The algorithms described in sections 3 and 4 were implemented using the com-
puter algebra system Singular (version 2.0.5) [20]. From now on we assume that
all the 1-forms ω that we will be talking about can be written as

(5.1) ω = (hy + f)dx + (−xh + g)dy

where h ∈ Q[x, y] is a homogeneous polynomial of degree n and f, g ∈ Q[x, y] are
polynomials of degree at most n.

In this case, the first algorithm checks only if the system of polynomial equations
that defines the singularities of ω is in general position with respect to x. But this
property holds generically in the set of 1-forms that we are considering. Therefore,
it is not surprising that randomly generated pairs of dense polynomials of type
(hy +f,−xh+ g) almost always give rise to a foliation that does not have algebraic
solutions. Table 1 gives the average time taken by the algorithm to prove that a
given pair is in general position in terms of the degree of the corresponding foliation.

All the tests discussed in this section were performed under Windows 2000 run-
ning on a micro-computer with an Intel Pentium 4 HT processor of 2.8 GHz, with
512 MB of primary memory. Table 1 summarizes the output of a program that
generates 50 pairs of dense polynomials for each degree and computes the total
CPU time taken to check that they are all in general position.

Degree of the foliation Average execution time
2 2ms
5 31ms
10 750ms
15 9,7s
20 1min e 12s
25 6min e 5s
30 19min e 24s

Table 1. Dense polynomials

If we generate sparse, instead of dense, polynomials the algorithm fails rather
often. There are two possible reasons for this, either (a) there are singularities at
the line at infinity L∞, or (b) some of the singularities have multiplicity greater
than one. We performed an experimental test which consists in generating 50 forms
of degree n, for 2 ≤ n ≤ 7. Each time the algorithm failed, we checked whether
that happened because of (a) or (b), above. The results are summarized in table 2.

As it stands, Algorithm 3.3 cannot cope with (b); however, (a) at first seems to be
only a case of bad luck. Indeed, by changing the coordinates we can easily arrange
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Degree Number of Singular Not in general
of foliation failures at L∞ (a) position (b)

2 6 4 2
3 15 12 3
4 13 9 4
5 14 12 2
6 16 13 3
7 13 8 5

Table 2. Sparse polynomials

for the line at infinity to be free of singularities of the 1-form. Unfortunately, this
simple device does not work, as we proceed to show.

Let ω be a 1-form with rational coefficients, and let Ω be its homogeneization
with respect to z. Consider the projective transformation defined by T [x : y : z] =
[x : y : z − λ(x, y)], where λ ∈ Q[x, y] is a homogeneous polynomial of degree one.
Denote by ω̂ = âdx+ b̂dy the dehomogeneization of T ∗(Ω) with respect to z. Then,

(g0) = (â, b̂) ∩Q[x] ( (â, b̂, λ) ∩Q[x] = (f).

If
Sing(Ω) ∩ L∞ 6= ∅ and Sing(Ω) 6⊂ L∞,

and all the singularities of T ∗(Ω) are outside L∞ then f 6= 1. Moreover, f is
a proper factor of the polynomial g0 of Theorem 3.1. In particular, g0 cannot
be irreducible. However, g0 is always a factor of the polynomial R computed by
Algorithm 3.3, so the algorithm will fail in this case.

As one might expect, the number of foliations for which the algorithm fails is
proportional to the number of vanishing coefficients in a and b, as the next table
shows. The data were obtained with a procedure that tests 50 randomly generated
foliations of degree 3 of each type. In performing this test we used the Singular
function sparsepoly which randomly chooses both, the coefficients that are going
to be zero, and the size of the nonzero coefficients. This function also allows the
user to choose the percentage of vanishing coefficients in the polynomial that it will
generate. The dense polynomials were obtained with the help of the same function,
by setting this percentage to zero. See [20] for more details about this function.

Number of coefficients equal to zero Percentage of failures
0% 0%
20% 16%
30% 22%
50% 56%
70% 82%
80% 96%
90% 99%

Table 3. Percentage of failures of Algorithm 3.3 against sparseness

The second algorithm is harder to test. Indeed, as we have seen, almost all
pairs of dense polynomials will give an affirmative result when put through the first
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algorithm. Thus we turned to sparse polynomials. Unfortunately, most pairs that
fail the first algorithm will also fail the second. Moreover, the few that did not had
coefficients so large that Singular had difficulty dealing with them.

We got around this problem by writing a program that generates 1-forms for
which the polynomial R(x) (of Step 3 of Algorithm 3.3) is a reducible polynomial
in x. More precisely, let

(5.2) a = −yxn + g(x) and b = xn+1 − f(x, y),

where f(x, y) is a polynomial of degree n in Q[x, y] and g a polynomial of degree
n in Q[x]. Suppose also that f(0, y) 6= 0. If a = 0 then y = g(x)/xn. Taking this
into the equation b = 0, we find that p = 0, where

(5.3) p = xn2+n+1 − xn2
f

(
x,

g(x)
xn

)
.

The program generates a reducible polynomial p of degree n2 + n + 1 and, by
comparing coefficients with (5.3) finds a and b. The resulting foliation, which fails
Algorithm 3.3 by construction, is then tested with Algorithm 4.3. The program
proceeds as follows:

Algorithm 5.1. Given n and a partition 2 ≤ d1 ≤ d2 ≤ · · · ≤ dt of n2 + n + 1,
the algorithm returns either a 1-form adx + bdy such that Algorithm 3.3 fails at ω,
while Algorithm 4.3 is successful, or failure.

Step 1: Find distinct primes p1, . . . , pt.
Step 2: Construct monic polynomials f1, . . . , ft, of the form

fj = xdj +
dj−1∑
i=1

cipjx
i + pj ,

where the ci are integers generated at random.
Step 3: Let F = f1 · · · ft.
Step 4: Comparing coefficients, as explained above, find (if they exist) poly-

nomials a and b such that

(a, b) ∩Q[x] = (F ).

If a and b cannot be found return failure.
Step 5: Apply Algorithm 4.3 to the foliation defined by adx + bdy.
Step 6: If the algorithm fails return failure, otherwise return a and b.

Two steps of this algorithm need some amplification. First, the polynomials fj

constructed in Step 2 are irreducible by Eisenstein’s criterion. Therefore, all the
factors of F = f1 · · · ft have multiplicity one.

Second, the algorithm assumes, for the sake of simplicity, that (in the notation of
(5.2)) g = 1 and f is a dense polynomial of degree n with undetermined coefficients.
A simple calculation shows that, in this case, the polynomial p obtained in (5.3)
is not dense. Moreover, this would be the case even if we had not assumed that
g = 1. For this reason we limited our tests to two cases:

• n = 2 with the partitions 3 ≤ 4 and 2 ≤ 2 ≤ 3 of 7, and
• n = 3 with the partitions 3 ≤ 4 ≤ 6 and 6 ≤ 7 of 13.
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When n = 2, we chose

F =

{
(x3 + c1p1x

2 + p2)(x4 + d1p2x
3 + d2p

2
2 + p2) for the partition 3 ≤ 4

(x2 + p1)(x2 + p2)(x3 + c1p3x
2 + p3) for the partition 2 ≤ 2 ≤ 3,

and, when n = 3,

F =

{
(x3 + p1)(x4 + p2)(x6 + c1p3x

4 + p3) for the partition 3 ≤ 4 ≤ 6
(x6 + c1p1x

4 + p1)(x7 + c1p2x
6 + c2p2x

4 + p4) for the partition 6 ≤ 7,

We ran the algorithm 100 times for each of the partitions listed above, and it
never reported a failure. The average time required to construct an example is
given in table 4.

Partition Average time
3 ≤ 4 125 ms

2 ≤ 2 ≤ 3 500 ms
3 ≤ 4 ≤ 6 1 min

6 ≤ 7 10 s

Table 4. Algorithm 5.1

As the experimental tests show, Algorithm 3.3 will prove that any sufficiently
generic 1-form of type (5.1) in Q[x, y] gives rise to a foliation of P2 without algebraic
solutions. Moreover, the algorithm is very efficient even for foliations of a fairly large
degree. Algorithm 4.3, on the other hand, suffers from serious problems caused by
coefficient explosion. Indeed it will almost certainly fail to return any result on
randomly generated forms for which Algorithm 3.3 fails. Despite that we were able
to construct many examples on which the first algorithm fails, while the second
successfully detects that the foliation does not have any algebraic solutions.
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