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GENERATING MODULES EFFICIENTLY
OVER NONCOMMUTATIVE NOETHERIAN RINGS

S. C. COUTINHO

ABSTRACT. The Forster-Swan Theorem gives an upper bound on the number of
generators of a module over a commutative ring in terms of local data. Stafford
showed that this theorem could be generalized to arbitrary right and left noethe-
rian rings. In this paper a similar result is proved for right noetherian rings with
finite Krull dimension. A new dimension function—the basic dimension—is the
main tool used in the proof of this result.

INTRODUCTION

The proof of many interesting results in commutative algebra and algebraic
K-theory are applications of local-global principles. These are results of the
following type: if a property is true for all the localisations of an R-module
M at each prime ideal of R, then it is true for M itself. For example, a
principle of this kind lies at the heart of Quillen’s solution of Serre’s conjecture
[8]. A further example of a local-global principle is the Forster-Swan Theorem.
Suppose that M is a finitely generated right module over a right noetherian
ring R. Let us denote the minimal number of generators of M by g.(M).
For a commutative ring R, the Forster-Swan Theorem gives an upper bound
for gp(M) in terms of local data; more precisely

gr(M) < sup{gRP(MP) + Kdim(R/P): P a J -prime ideal of R}.

For a proof of this theorem and some of its applications to commutative algebra
and algebraic geometry, see [8].

In this paper we are interested in a generalisation of the above inequality
to noncommutative noetherian rings. However, before this generalisation is
achieved, certain preliminary difficulties—the choice of an appropriate dimen-
sion function and the lack of localisation—have to be overcome. For the dimen-
sion function the natural choice is the Krull dimension as defined by Gabriel
and Rentschler (see [5] for definition and properties). Turning now to consider
the localisation problem, if R is commutative, an application of Nakayama’s
Lemma shows that for a prime ideal P of R, one has

gR,,(MP) = g(R/p)P(M/MP ®R/p (R/P)p)-
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Note that (R/P), is the quotient ring of the domain R/P. This latter con-
struction is available in the noncommutative case since, by Goldie’s Theorem,
a prime right noetherian ring admits a simple artinian quotient ring. This sug-
gests the following definition. Let M be a finitely generated right module over
a right noetherian ring R and let P be a prime ideal of R. The ‘local number
of generators of M at P’, denoted g(M, P), is given by

g(M’ P) = gQ(R/p)(M/MP ®R/p Q(R/P))

where Q(R/P) is the Goldie quotient ring of the prime ring R/P.

The definition of g(M, P) given above is that of Warfield [14], who also
showed that this definition can be used to establish a version of the Forster-Swan
Theorem for FBN rings. Stafford [11] generalised Warfield’s work considerably
and proved the following result:

Theorem (Stafford [11, Theorem 3.1]). Let M be a finitely generated right mod-
ule over a right and left noetherian ring R. Then

gr(M) < sup{g(M, P)+Kdim(R/P): P a J -prime ideal of R} .

The proof of this theorem in [11] is extremely technical. However, Stafford
showed that many of these technical difficulties can be avoided if it is assumed
that the ring R satisfies the weak ideal invariance condition, see [12]. Unfor-
tunately, right and left noetherian rings which are not weakly ideal invariant do
exist, see [13].

In this paper we take a different point of view. Instead of imposing additional
conditions on the ring, we work with a different dimension function, for which
all right noetherian rings are weakly ideal invariant. This is the basic dimension,
as defined and studied in §§1 and 2. Using this dimension we are able to prove
a version of the Forster-Swan Theorem for right noetherian rings with finite
right Krull dimension (Theorem 5.4). In §3 we present again the terminology
adopted in [11], necessary to state the theorem in its full generality. The proof
of our version of the Forster-Swan Theorem itself is given in §5.

Several applications of the Forster-Swan Theorem to the study of noncom-
mutative rings can be found in [11]. The reader should take particular notice
of [11, §5], where generalisations of Serre’s Theorem and Bass’s Cancellation
Theorem are to be found. The applications contained in [11] are there stated
for right and left noetherian rings. However, using Theorem 5.4 the same re-
sults can be established, with essentially the same proofs, for right noetherian
rings of finite Krull dimension, see [1]. Recently, Dean and Stafford [3] used
the Forster-Swan Theorem to show that a certain right and left noetherian ring
cannot be embedded in an artinian ring. In a subsequent paper [2], we show
how the basic dimension can be used to develop a theory of basic elements for
noncommutative noetherian rings.
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Finally we would like to mention that some of the results presented in this
paper, although in less general form, have appeared in the books [9] and [10].

1. BASIC DIMENSION

It is a well-known fact that, over a noncommutative ring, a torsion module
can be faithful. In this section we study a variant of the Krull dimension which
measures how close such a module is to having a nonzero annihilator.

Let n > —1 be an integer and M a noetherian module. An x-basic compo-
sition series of M is a series of submodules

M=M,>M_, > >M=0

such that if E={i:1<i<s and r-anny(M,;/M,_,) = 0} then:

(a) M;/M,_, is critical for every i € E and,

(b) n =max{Kdim(M,;/M,_,): i€ E}.

Note that n = —1 is equivalent to E being empty. That M has an n-basic
composition series for some # follows from the fact that a noetherian module
always has a critical composition series.

Let M be a noetherian right module over a ring R. The basic dimension of
M over R, denoted by Bdimy(M), is the least n > —1 such that M admits
an n-basic composition series. Our first result outlines some of the properties of
the basic dimension. The proof is an immediate consequence of the analogous
result for Krull dimension and will be omitted.

Proposition 1.1. Let M be a noetherian right module over a ring R.
(a) If N is a submodule of M then

Bdim (M) = max{Bdimg(N), Bdimy(M/N)}.

(b) If r-anny (M) # 0 then Bdimy(M) = —1; and if R is prime, the converse
is true.

(c) If R has right Krull dimension and M is finitely generated over R, then
Bdim (M) < Kdim (M) < Kdim(R).

Recall that a ring R with right Krull dimension is said to be right weakly ideal
invariant if, given any two-sided ideal T and finitely generated right R-module
M such that Kdim(M) < Kdim(R/T), then Kdim(M ®, T) < Kdim(R/T).
As was indicated in the Introduction, noetherian rings which are not weakly
ideal invariant do exist. However, if the basic dimension is used instead of
Krull dimension, then all noetherian rings are weakly ideal invariant. In fact,
as the next proposition shows, they satisfy an even stronger condition.

Proposition 1.2. Let M be a finitely generated right module over a right noethe-
rianring R. If T is a two-sided ideal of R then Bdim (M) = Bdimz(M®,T).
Proof. Without loss of generality suppose that M is cyclic and let M ~ R/I,
for some right ideal I of R. Since M ® T ~ T/IT, it is sufficient to show
that Bdim (7 /IT) = Bdimg(R/I). By Proposition 1.1(a) we have

Bdim (R/IT) = max{Bdim,(R/T), Bdim(T/IT)}
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and

Bdimg(R/IT) = max{Bdimy(R/I), Bdim(I/IT)}.
Since Bdimg(R/T) = Bdimy(I/IT) = —1 by Proposition 1.1(b), it follows that
Bdim(T'/IT) = Bdimg(R/IT) = Bdimy(R/I), as desired.

Proposition 1.3. Let M be a finitely generated right module over a prime right
noetherian ring R.

(a) Bdimy(M) = Kdim(R) if and only if M is not a torsion module.

(b) If R is commutative or FBN then Bdim (M) equals —1 if M is torsion,
and equals Kdim(R) otherwise.

Proof. This is a consequence of [7, Proposition 1.4], according to which M is
torsion if and only if Kdim(M) < Kdim(R). Thus if M is torsion, Bdim (M)
< Kdim(M) < Kdim(R). On the other hand, if Bdimy(M) < Kdim(R), then
for each factor M,/M,_, in a basic composition series of M , either

r-anng(M,/M,_,)#0
or
Kdim(M,/M,_,) < Bdimy(M) < Kdim(R).
In either case M;/M,_, is torsion, hence so is M . Finally (b) holds because if
R is FBN then M is torsion if and only if r-annp(M) # 0.

Let R be a right noetherian ring and M a finitely generated right R-module.
If P is a prime ideal of R, set Bdim(M, P) = Bdimg ,(M/MP). If X C
Spec(R) then we will extend the previous notation and write Bdim(M, X) =
sup{Bdim(M, P): P € X}. It is Bdim(M, P) that we will use to formulate
and prove the results of later sections. The next corollaries follow immediately
from Propositions 1.1 and 1.3.

Corollary 1.4. Let M be a finitely generated right module over a right noetherian
ring R. If P is a prime ideal of R then

(a) —1 < Bdim(M, P) < Kdim(M/MP) < Kdim(R/P).

(b) Bdim(M , P) = —1 ifand only if r-anng(M/MP) # P.

(¢c) Bdim(M, P) = Kdim(R/P) if and only if M/MP is not torsion over
R/P.

Corollary 1.5. Let M and R be as in Corollary 1.4. If X C Spec(R) and N
is a submodule of M then

(a) Bdim(M, X) < Kdim(R).

(b) Bdim(M/N, X) < Bdim(M, X) < max{Bdim(N, X), Bdim(M/N, X)}.

2. PATCH-CLOSED SETS

Throughout this section let R be a right noetherian ring and M a finitely
generated right R-module. If I C R, set V(I) = {P € Spec(R): I C P} and
W(I)={P € Spec(R): I ¢ P}. Recall that the patch topology on Spec(R) is
the topology which has a subbasis of closed sets consisting of V' (I) and W (I)
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for each two-sided ideal I of R. There is a very neat description of the patch-
closed sets which will be given in the next proposition.

Proposition 2.1. 4 set X C Spec(R) is patch-closed if and only if any prime in
Spec(R) which is an intersection of prime ideals in X belongs to X .

Proof. Clearly V(I) and W(I) satisfy this condition. We prove the converse.
Suppose that X C Spec(R) satisfies this condition and let X’ be its complement
in Spec(R). For each Q € X', let I, = N{P € X: Q C P}. By definition
Qcl, andso Q€ V(Q)n W(IQ). Since V(Q)Nn W(IQ) c X' it follows that
X' is the union of such subsets, each of which is open in the patch topology.
Hence X' is open, and X closed, in the patch topology.

If X is patch-closed and ¢ an integer, write X, = {P € X: r-Kdim(R/P) >
t}. Note that Spec(R) is always patch-closed, and so too is the J-Spec of a
commutative ring. The next proposition indicates that in the noncommutative
case J-Spec should include the primitive ideals of the ring. Recall that an ideal
P of R is right primitive if there exists a faithful simple right R/P-module.

Proposition 2.2. If Bdim(M , P) = —1 for every right primitive ideal P of R,
then M =0.

Proof. Suppose that M # 0 and choose a two-sided ideal / of R maximal
with respect to having M # MI. Let N be a maximal submodule of M
with MI Cc N and let P = r-anng(M/N). Then P is right primitive and,
since MP C N, and I G P we have r-anny(M/MP) = P. Therefore, by
Proposition 1.4(b), Bdim(M, P) # —1, a contradiction.

Now let J-Spec(R) be the set of all prime ideals of R which are intersections
of right primitive ideals. In other words, J- Spec(R) is the smallest patch-closed
subset of Spec(R) which contains all the right primitive ideals of R. Notice
that J-Spec(R) contains also the left primitive ideals of R; in fact it is the
smallest patch-closed set which contains these ideals. See [6, pp. 192-196] for
details. The elements of Spec(R) will be called J-primes.

The importance of patch-closed sets lies in the following property: if X C
Spec(R) is patch-closed and J-Spec(R) C X then Bdim(M, X) = Bdim(M, P)
holds for only finitely many primes P € X . The crucial step in the proof of
this and other finiteness properties of the basic dimension is isolated in the next
theorem. First a technical lemma.

Lemma 2.3. Let L ¢ N be submodules of M with N/L critical. If I is a
two-sided ideal of R and I ¢ r-ann(N/L), then Kdim(N + MI/L + MI) <
Kdim(N/L).

Proof. Since I ¢ r-ann(N/L), then NI ¢ L. Hence Kdim(N/NI + L) <
Kdim(N/L) by the criticality of N/L. Thus Kdim(N/N N (MI + L)) <
Kdim(N/NI + L) < Kdim(N/L), as required.

Theorem 2.4. Let R be a prime right noetherian ring and M be a finitely
generated right R-module. Suppose that Bdim(M, 0) < s, for some integer
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s >0, and let X be an infinite set of nonzero prime ideals of R such that
Bdim(M , P) > s for each P€ X. Then

(Y{P: PeXx}#0.
Proof. If Bdim(M, 0) = —1 then I = r-anny(M) # 0 and since Bdim(M , P)
>0 for P € X, it follows that I Cc N{P: P € X} as required. Thus we may
assume that Bdim(M,0) =n# —1. Let

(2.5) M=M,>M, ,>--->DM;=0

be an n-basic composition series of M. Let J;, = r-anng(M;/M;_,), and
J={J;:J;#0 and 1 <i<wv}. Weclaim that J ¢ N{P: P € X}. Since,
clearly, J # 0, this is enough to show that the conclusion of the theorem holds.
We proceed to prove the claim.

Let P € X. One of the hypothesis of the theorem is that Bdim(M , P) > s.
Applying 1.5(b) to the series (2.5) we conclude that, for some i,

Bdim(M, + MP/M,_, + MP, P) >s.

However, if J;, ¢ P, then M, + MP/M,_, + MP is unfaithful as an R/P-
module so has basic dimension —1. Also, if J; = 0, then using Lemma 2.3
one shows that Bdim(M, + MP/M,_, + MP, P) < 5. Hence, for some i,
0# J; C P, and therefore J C P. The claim now follows immediately.

Corollary 2.6. Let X be a patch-closed subset of Spec(R) and let t > 0 be an
integer. Then there are only finitely many prime ideals P € X, - X, with
Bdim(M, P) > max{0, Bdim(M, X, )}.
Proof. Suppose that the result is false. Then the set
Y={PeX,-X,,: Bdim(M, P)>max{0, Bdim(M, X,_,)}}

is infinite. Let Q be an ideal maximal among the intersections of infinitely
many elements of Y. Then Q is prime and Kdim(R/Q) > t. Further, since
X is patch-closed, Q € X,. Let Y = {P € Y: Q C P}; by the choice of
Q, Y’ is infinite. Passing to the quotient ring R/Q, we can assume that
Q = 0. Applying Theorem 2.4, we get ([{P: P € Y'} # 0, which contradicts
the maximality of Q.

Corollary 2.7. Let Kdim(R) < oo. If M #0 then
Bdim(M , P) = Bdim(M , J-Spec(R))
holds for only finitely many J-primes P .

Proof. This is a simple induction using Corollary 2.6. Note that since M # 0,
Bdim(M', J-Spec(R)) > 0 by Proposition 1.1.

3. HOMOMORPHIC IMAGES OF PROJECTIVE MODULES

In this section we review the results of [11, §2] concerning homomorphisms
from a projective module to a finitely generated module. Let M be a finitely
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generated right module over a right noetherian ring R and F a finitely gener-
ated projective right R-module. First we recall some standard notation. Let P
be a prime ideal of R and Q(R/P) the quotient ring of R/P . Then

p(M, P) =lengthy g p (M/MP ®p,p Q(R/P))

is called the reduced rank of M at P. If R is prime, we will write p,(M)
instead of p(M, 0). Now set

g°(M,P)=0 if p(M,P)=0
=oo if p(M,P)#0but p(F,P)=0
=p(M, P)/p(F, P) otherwise.

Define gF(M , P) to be the smallest integer greater or equal than §F (M, P).
Notice that if F = R then gR(M ,P) = g(M, P), in the notation of the
introduction. Similarly §R(M ,P)=8g(M, P)=p(M, P)/p(R, P) is the nor-
malised rank of M at P.

There is another way of defining gF(M , P) which is sometimes useful. Set
gF (M) to be the smallest integer n such that F " maps onto M , or gF (M) =
oo if no such integer exists. Then it is readily checked that

g" (M, P)=g"(M/MP gy, Q(R/P))

where G = F/FP ®, /P Q(R/P). These definitions appeared originally in
Warfield’s paper [14], but we follow the notation of [11]. The following prop-
erties of §F(M , P) are easily checked: if N is a submodule of M, then

(3.1) g, Py <" (N, P)+3"(M/N, P) and
(3.2) if R is prime then 2* (M, 0) = " (N, 0)+ 8" (M/N, 0).

Inspired by the Forster-Swan Theorem we would like to show that gF (M)
can be bound above by means of {gF(M , P): P € Spec(R)}. However, the
following example from [11] shows that this is not always possible.

Example 3.3. Let A be a simple, noetherian, nonartinian ring and k‘ a field.
Set R=Ak, F=0&k and let M be a simple 4-module on which k acts
trivially. Then g(M, 0) =0 for all prime ideals P of R, yet gF (M) =o00.

Thus it will be necessary to impose some condition on the projective module
F to guarantee that M is ‘finitely generated’ in the sense that there exist 6, €
Hom(F, M) for which M = ¥} 6,(F) . This is done by the following definition
from [11]. A finitely generated projective R-module F is said to cover M if
every simple image of M is also a simple image of F . Notice that if F covers
M then it covers every homomorphic image of M .

Proposition 3.4 [11, Lemma 2.3]. gF (M) < oo ifand only if F covers M .

An immediate consequence of Proposition 3.4 is that if F covers M then
g' (M, P) is always finite for all prime ideals P of R. Note that a free
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module covers every finitely generated R-module. Other situations for which
this condition is automatic can be found in [11, Lemma 2.1].

We finish this section with some more notation. The first is a generalisation
of the stable rank of a module. We define s* (M) by saying that st (M) <s
if given any integer r > s and homomorphisms 6, ..., 6§, € Hom(F, M) for
which M =37} 6,(F), then there exist J, € End(F) such that

r—1

M=>(6,+6,6)(F).
1

Next we define the function which will give the upper bound of the Forster-
Swan inequality. Let P be a prime ideal of R, set

b (M, P)=g" (M, P)+Kdim(R/P) if g"(M,P)#0,
= Bdim(M, P) + 1 otherwise.

This differs from Stafford’s notation in [11]; he has bF(M ,P)=0if gF(M , P)
= 0. Note that if gF(M, P) # 0 then g (M, P)+Kdim(R/P) > Bdim(M , P)
+ 1 and that equality holds if gF(M , P)=1. For asubset X of Spec(R), let

b (M, X) = sup{b" (M, P): P e X}.
We can now write the inequality we are aiming at as

st (M) < b5 (M, J-Spec(R)).

4, THE PRIME RING CASE

Throughout this section let M be a finitely generated right module over a
prime right noetherian ring R and let F be a finitely generated projective right
R-module. We begin with a generalisation of the well-known fact that if J is
a right ideal of R then there exists x € J with uniform dimension(xR) =
uniform dimension(J).

Proposition 4.1. Let I be a nonzero two-sided ideal of R and let o, B €
Hom(F , M). Then there exists 6: F — FI such that

Pr(M/(a+ BO)(F)) = max{pp(M/a(F)+ B(F)), pr(M) — pr(F)}.
Proof. Clearly the right-hand side is less or equal than the left-hand side. We
prove the other inequality. Note that, since we are only interested in reduced
ranks, the module M can be assumed to be torsion free. Now choose J: F —
FI such that py((a+B6)(F)) is as large as possible. Without loss of generality,
replace a by a+ fd. If Ker(a) =0, then a(F) ~ F and

Pr(M/a(F)+ B(F)) < pp(M) = pp(F).

Thus 6 = 0 will be satisfactory.
Now suppose that Ker(a) # 0 and that pg(a(F) + B(F)/a(F)) # 0. In
particular a(F) is not essential in a(F)+ B(F). Choose a uniform submodule
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D C B(F) such that DNa(F) = 0. Let k be a nonzero element of Ker(a).
Since F is projective, there is a map n: F — R with n(k) # 0. Hence
DIn(k)R # 0, since R is prime. Therefore f(g)in(k) # 0 for some g € F
with f(g) € D and i € I. Define 6: F — FI by f — gin(f). Then
0# B(g)intk) e DN (a+ BO)(F). Since D is uniform o(F)+ D/(a+ BS)(F)
is torsion. Thus pg((a+ B6)(F)) = pg(a(F))+1, which contradicts the choice
of a. Hence pg(a(F)+ B(F)/a(F)) =0, which completes the proof.

An easy induction argument yields the following result.

Corollary 4.2. Let I be a nonzero two-sided ideal of R. If M =¥} 0,(F) for
6, € Hom(F , M) then there exist 6, € Hom(F , FI) such that

p (M / (0, +> 0,.5,) (F)) =max{0, pp(M) — p(F)}.
2

The next proposition is the analogue for Bdimg (M) of Proposition 4.1.

Proposition 4.3. Let I be a nonzero two-sided ideal of R. Suppose that M
is torsion and that o, f € Hom(F, M) satisfy Bdimy(M/a(F) + B(F)) <
Bdimy(M). Then there exists 6: F — FI such that
Bdim(M/(a + B6)(F)) < Bdimg(M).
Proof. By Proposition 1.1(a), Bdimg(B(FI)) < Bdimy(M). Let
0=N,C N, C--CN,=B(FI)
be a basic composition series of S(FI) and consider the inductive statement:

A(i): There exists 6 € Hom(F, FI) with Bdimg(M/N, + (o + BJ)(F)) <
Bdim (M) .

Note first that

Bdimg(a(F) + B(F)/a(F) + B(FI)) = -1,
since I C r-ann(a(F)+ B(F)/a(F)+ B(FI)). Therefore by Proposition 1.1(b)
Bdim(M/a(F)+ B(FI)) = Bdimy(M/a(F) + B(F)) < Bdimgz(M)
and so A(s) holds with 6 = 0. Note also that A(0) is the result at which we
aim.

Suppose now that A(i) is true for some 0 < i < s. We aim to show that
A(i — 1) is also true. Let 6 € Hom(F, FI) be as in A(i). Without loss of
generality we can replace o by a+ 9.

Let L, =r-ann(N,/N,_,). If L, # 0 then

L; C r-ann(N,; + o(F)/N,_, + a(F))
and so
Bdimy(M/N,_, + a(F)) < Bdimg(M).
Therefore, we can assume that L, = 0. Since M is torsion, Ker(a) # 0.
Thus, since F is projective, there exists k € Ker(a) and n € Hom(F, R) with
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n(k) # 0. Hence N,Rn(k)R ¢ N,_, . Choose x € N, such that xn(k) ¢ N,_,,
and note that x = f(g) for some g € FI. Now define 6: F — FI by
S —&n(f). Then

(a+ Bo)(k) = B(g) - n(k) € (N;_; + (. + BS)(F))NN,.

1

Since N,/N,_, is critical this implies that

Kdim(N, + (a4 B6)(F)/N,_, + (a + B6)(F)) < Kdim(N,/N,_,) < Bdimy(M).

Of course N, + (a+ B6)(F)= N, + a(F), and so a+ B¢ satisfies
Bdim,(N/N,;_, + (a+ BJ)(F)) < Bdimy(M)

as required.

Corollary 4.4. Let I be a nonzero two-sided ideal of R. Suppose that M is

torsion and that 6, ...,0, € Hom(F, M) satisfy Bdimg(M/ Y ]6,(F)) <

Bdimg(M). Then there exist J,, ...,d0, € Hom(F, FI) such that 6 = 6, +
206, satisfies

s 171
Bdim,(M/60(F)) < Bdimg(M).
Proof. Consider the following inductive hypothesis:

A(j): Let M be a finitely generated torsion right R-module. Let 6, ..., 0 ;
€ Hom(F, M) with Bdimg(M/ Z{ 0,(F)) < Bdimg(M). Then there exist
d,,...,6;, € Hom(F, FI) suchthat 6 = 01+Z£ 0,6, satisfies Bdimy(M/6(F))
< Bdim,(M).

The case j = 2 is given by Proposition 4.3. Suppose now that A(j) is true
for all j < s—1. We prove that A(s) is also true. Assuming that the hypothesis
of A(s) holds, let M’ = M/6,(F). For ¢: F — M let ¢ denote the induced
map F — M'. Suppose now that Bdimg(M') = Bdim,(M'/ 35 6,(F)). Then
Bdimy(M') = Bdimg(M'/ 33 6,(F)) < Bdimg(M), and so Bdim,(M/6,(F))

< Bdim, (M) . Therefore the result follows if we set J, =--- =46, =0.
Suppose that Bdim,(M'/ 35 6,(F)) < Bdimg(M') . By induction, there exist
Ny, ..., N, € Hom(F, FI) such that if ¢ =6,+ 3 ;6,n,, then

Bdim (M) > Bdimy(M') > Bdimz(M'/§(F)) = Bdimy(M/6,(F) + ¢(F)).

Another application of the induction hypothesis yields a A € Hom(F , FI) such
that Bdimg(M/(6, + ¢A)(F)) < Bdim(M). The result follows if we set J, = 4
and 6, = n,A for 3 <i<s, completing the proof of A(s).

5. THE MAIN THEOREM
Throughout this section let A be a finitely generated right module over a
right noetherian ring R and let F be a finitely generated projective right R-
module. We begin by rephrasing Corollary 4.2 in terms of gF(M , P).
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Proposition 5.1. Let P be a prime ideal of R such that 0 < g (M, P)<oo.
Let I be a two-sided ideal of R such that I ¢ P. If M = Y| 6,(F) for
6, € Hom(F , M) then there exist 6; € Hom(F , FI) such that

g (M/ (01 +iei5i) (F), P) =g'm,P)-1.
2

We now combine Propositions 5.1 and 4.4 to show that bF (M, P) can be
reduced simultaneously at a finite number of prime ideals.

Lemma 5.2. Let P, ..., P be prime ideals of R with 0 < bF(M, P) < o0
for 1 < i< m. Suppose that M =Y, 6,(F) for 6, € Hom(F, M). Then there
exist J,, ..., 0, € End(F) such that if 6 =6, + ), 0,0, then

b (M/8(F), P) < b" (M, P) -1
for 1<i<m.
Proof. The proof is by induction on m. Note that m = 0 is trivial. Suppose

that P, ..., P, are ordered so that if P, & P; then i > j. By induction
we can assume that J,, ..., d; have been chosen such that ¢ = 6, + Esz 6,0,
satisfies

b" (M/$(F), P) <b" (M, P) -1

for 1 <i<m~—1. Note that M = ¢(F) + 5 6,(F).
Let I=PN---NP, ,,then I #0 (mod P, ). We now consider two

cases. First suppose that gF(M ,P,) # 0, then by Proposition 5.1 choose
oy, ..., 0. € Hom(F, FI) such that § = ¢+ 3, 6,0, satisfies

g"(M/o(F),P,)<g" (M,P,)-1.
On the other hand, if gF(M, P ) =0 then choose 5; yeens 63' € Hom(F, FI)
by Corollary 4.4 such that § = ¢ + 36,9, satisfies Bdim(M/6(F), P,) <
Bdim(M, P,) — 1. In either case b*(M/6(F), P,) < b"(M,P,)—1.
Finally since 0(F) = ¢(F) (mod P;) for 1 <i<m-—1, then
b (M/6(F), P) <b" (M, P) -1
for 1<i<m.

The next lemma shows that to prove the theorem we will have to deal with
only a finite number of prime ideals.

Lemma 5.3. Let Y = J-Spec(R). Suppose that r-Kdim(R) < oo and that F
covers M. If M # 0 then there are only finitely many J-prime ideals P for
which b¥ (M, P)=b"(M, V).

Proof. If the result is false then there exists an integer ¢ > 0 such that b* (M, P)

> max{1, bF(M, Y, )} for infinitely many P € Y, - Y, ;. Among all such
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modules choose one, say M, for which ¢ is a large as possible and, modulo
this, such that b" (M,Y,,,) is as small as possible.

If 5(M,Y,,,) = 0 then Bdim(M, Y, ) = —1. By Corollary 2.6 there
are only finitely many primes P € Y, - Y, +1 such that Bdim(M, P) > 0,

contradicting the hypothesis. So we can assume that b" (M,Y,,)>0.
Let PeY, -7, . Notice that if gF(M, P) <1 then

t+1°
b* (M, P) = Bdim(M, P) + 1,
and if P also satisfies bF(M, P) > bF(M, Y,.,), then
Bdim(M, P) > Bdim(M, Y, ).

Thus by Corollary 2.6 there are only finitely many P € Y,-Y, , with gF (M, P)
<1 and b* (M, P) > bF(M, Y,.,). In particular the set X = {P € Y, —
Y,,,:& (M, P)>2 and b" (M, P)>b"(M, Y, )} is infinite.

Our choice of ¢ implies that ¥ (M, Q) = bF (M, 7,,,) for only finitely
many Q €Y, . Since F covers M, gF(M) < oo by Proposition 3.4. Thus
by Lemma 5.2 there exists § € Hom(F, M) such that bF(M/H(F) , Y, ) <
b"(M, Y,,,)~ 1. On the other hand if P € X then

g (M/6(F),P)>g"(M,P)-1>1.
Hence bF(M/G(F), P) > bF(M/G(F), Y,,,) for P € X, which contradicts
either the maximality of ¢ or the minimality of bF (M,Y,

1) -
We can now prove the following generalisation of the Forster-Swan Theorem.

Theorem 5.4. Let M be a finitely generated right module over a right noetherian
ring R with finite right Krull dimension. Let F be a finitely generated projective
right R-module that covers M . Then

s" (M) < b" (M, J-Spec(R)).
Proof. Let Y = J-Spec(R). We proceed by induction on bF (M,Y). If
bf (M,Y)=0 then M = 0 by Proposition 2.2. By Proposition 3.4 we have
that M = ¥} 6,(F) for 6, € Hom(F, M). Suppose that s > b (M, Y) > 0.
By Lemma 5.3 there are only finitely many J-primes P for which bF (M, P)=
bF(M , Y). Thus by Lemma 5.2 there exist J, € End(F) such that if 6 =
0, +Y500, and M = M/§(F) then b" (M, Y) < b" (M, Y)- 1. Note that
M =Y, 6,(F), where the bar denotes the canonical homomorphism M — M .
So s—-1< bF(H, Y). Thus by induction there exist 7, € End(F) such that
M=Y3""(0,+87,)(F). Hence
s—1

M=) (6,+6,n,)(F),

1
where 7, =6, - 22_1 n;9;

i
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Corollary 5.5. Let R, M, F be as in the theorem. Then
(a) s(M) < b(M, J-Spec(R)).
(b) s(M) <sup{g(M, P)+Kdim(R/P): P € J-Spec(R)}.
Proof. (a) is the theorem with F = R. Since
b(M, P)< g(M, P)+Kdim(R/P)
for every P € J-Spec(R), (b) is an immediate consequence of (a).

Another immediate consequence of Theorem 5.4 is the following result of
Warfield [14).

Corollary 5.6. Let R be an FBN ring with finite right Krull dimension, then
s(M) < sup{E(M, P): P € J-Spec(R)}
where R .
b(M, P)=g(M, P)+Kdim(R/P) ifg(M,P)#0,
=0 otherwise.

Since a commutative noetherian ring is FBN, Corollary 5.6 enables us to
recover the original result of Eisenbud and Evans [4].

We will end with an illustrative example drawn from [11]. Recall that the
first Weyl algebra over Z, denoted by A4,(Z), is the Z-algebra generated by x
and y under the relation xy —yx =1.

Example 5.7. Let R = 4,(Z), M = R/xR and X = Spec(R). Then:
(a) sup{g(M, P)+Kdim(R/P): P X and g(M, P)#0}=2.
(b) There are infinitely many P € X with g(M, P) + Kdim(R/P)=2.
(c) b(M, Spec(R)) = b(M, 0)=Bdim(M,0)+1=3.

This example shows that, if our definition of bF (M, P) were replaced by
that of Stafford [11], as described at the end of §3, then Lemma 5.3 would fail.

Proof. We first recall a few elementary facts about the prime ideals of R, see
[9] for details. The height one primes of R are all of the form pR, for a prime
p#0 of Z. Also pR+ x*R and pR + xR + y’R are primes. Therefore we
have a chain

0cpRcpR+x"Rc pR+x"R+)°R.
Since Kdim(R) = 3, the factors of R by the prime ideals of this chain must
have Krull dimensions 3, 2, 1 and 0, respectively.

If P=0 orif P is aprime ideal of height one, then M/MP is torsion over
R/P and so g(M, P) = 0. For any other prime ideal, if g(M, P) # 0 then
g(M, P) + Kdim(R/P) < 2. However if P = pR + x’R for some prime p,
then

M/MP =R/xR+pR~x'R+pR/x""'R+pR~x"""R+pR/P
for 1 <i<p-1. We also have that xX*" 'R+ DPR/P is a uniform right ideal
of R/P. Hence p(M,P) =1, p(R,P) =p and b(M,P) = g(M, P) +
Kdim(R/P) = 2. This proves (a) and (b).



856 S. C. COUTINHO

To prove (c) it is enough to show that Bdim(M,0) = 2. Notice that
xA,(Q) is a maximal right ideal of 4,(Q). Thus any proper factor N of
R/xR is annihilated by some nonzero integer. It then follows from the pre-
vious paragraph that Kdim(N) < 1. However since R/xR is faithful and
Kdim(R/xR) = 2, any submodule of R/xR is faithful and has Krull dimen-
sion 2. Thus Bdim(M, 0) = 2, as required.
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