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GENERATING MODULES EFFICIENTLY 

OVER NONCOMMUTATIVE NOETHERIAN RINGS 


S. C. COUTINHO 

ABSTRACT.The Forster-Swan Theorem gives an upper bound on the number of 
generators of a module over a commutative ring in terms of local data. Stafford 
showed that this theorem could be generalized to arbitrary right and left noethe- 
rian rings. In this paper a similar result is proved for right noetherian rings with 
finite Krull dimension. A new dimension function-the basic dimension-is the 
main tool used in the proof of this result. 

The proof of many interesting results in commutative algebra and algebraic 
K-theory are applications of local-global principles. These are results of the 
following type: if a property is true for all the localisations of an R-module 
M at each prime ideal of R ,  then it is true for M itself. For example, a 
principle of this kind lies at the heart of Quillen's solution of Serre's conjecture 
[a]. A further example of a local-global principle is the Forster-Swan Theorem. 
Suppose that M is a finitely generated right module over a right noetherian 
ring R . Let us denote the minimal number of generators of M by gR(M) . 
For a commutative ring R , the Forster-Swan Theorem gives an upper bound 
for gR(M) in terms of local data; more precisely 

gR(M)5 sup{gRp(Mp)+ Kdim(R/P) : P a J -prime ideal of R } . 
For a proof of this theorem and some of its applications to commutative algebra 
and algebraic geometry, see [8]. 

In this paper we are interested in a generalisation of the above inequality 
to noncommutative noetherian rings. However, before this generalisation is 
achieved, certain preliminary difficulties-the choice of an appropriate dimen- 
sion function and the lack of localisation-have to be overcome. For the dimen- 
sion function the natural choice is the Krull dimension as defined by Gabriel 
and Rentschler (see [5] for definition and properties). Turning now to consider 
the localisation problem, if R is commutative, an application of Nakayama's 
Lemma shows that for a prime ideal P of R , one has 
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Note that (RIP), is the quotient ring of the domain R I P .  This latter con- 
struction is available in the noncommutative case since, by Goldie's Theorem, 
a prime right noetherian ring admits a simple artinian quotient ring. This sug- 
gests the following definition. Let M be a finitely generated right module over 
a right noetherian ring R and let P be a prime ideal of R . The 'local number 
of generators of M at P ', denoted g ( M ,  P) , is given by 

where &(RIP) is the Goldie quotient ring of the prime ring R I P .  
The definition of g ( M ,  P )  given above is that of Warfield [14], who also 

showed that this definition can be used to establish a version of the Forster-Swan 
Theorem for FBN rings. Stafford [ l  11 generalised Warfield's work considerably 
and proved the following result: 

Theorem (Stafford [ l  1, Theorem 3.11). Let M be afinitely generated right mod- 
ule over a right and left noetherian ring R . Then 

gR(M)5 sup{g(M , P )  + Kdim(R/P) : P a J -prime ideal of R ) . 

The proof of this theorem in [ l  11 is extremely technical. However, Stafford 
showed that many of these technical difficulties can be avoided if it is assumed 
that the ring R satisfies the weak ideal invariance condition, see [12]. Unfor- 
tunately, right and left noetherian rings which are not weakly ideal invariant do 
exist, see [13]. 

In this paper we take a different point of view. Instead of imposing additional 
conditions on the ring, we work with a different dimension function, for which 
all right noetherian rings are weakly ideal invariant. This is the basic dimension, 
as defined and studied in $5  1 and 2. Using this dimension we are able to prove 
a version of the Forster-Swan Theorem for right noetherian rings with finite 
right Krull dimension (Theorem 5.4). In $3 we present again the terminology 
adopted in [ l  11, necessary to state the theorem in its full generality. The proof 
of our version of the Forster-Swan Theorem itself is given in $5. 

Several applications of the Forster-Swan Theorem to the study of noncom- 
mutative rings can be found in [ l  11. The reader should take particular notice 
of [ 1 1, $ 51, where generalisations of Serre's Theorem and Bass's Cancellation 
Theorem are to be found. The applications contained in [ l  11 are there stated 
for right and left noetherian rings. However, using Theorem 5.4 the same re- 
sults can be established, with essentially the same proofs, for right noetherian 
rings of finite Krull dimension, see [I]. Recently, Dean and Stafford [3] used 
the Forster-Swan Theorem to show that a certain right and left noetherian ring 
cannot be embedded in an artinian ring. In a subsequent paper [2], we show 
how the basic dimension can be used to develop a theory of basic elements for 
noncommutative noetherian rings. 
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Finally we would like to mention that some of the results presented in this 
paper, although in less general form, have appeared in the books [9] and [lo]. 

It is a well-known fact that, over a noncommutative ring, a torsion module 
can be faithful. In this section we study a variant of the Krull dimension which 
measures how close such a module is to having a nonzero annihilator. 

Let n 2 -1 be an integer and M a noetherian module. An n-basic compo- 
sition series of M is a series of submodules 

M =  Ms > Ms-, > . . .  > M, = O  

such that if E = {i: 1 5 i 5 s and r-annR(Mi/M,-,) = 0) then: 
(a) Mi/Mi-, is critical for every i E E and, 
(b) n = max{Kdim(Mi/Mi-,): i E E )  . 

Note that n = -1 is equivalent to E being empty. That M has an n-basic 
composition series for some n follows from the fact that a noetherian module 
always has a critical composition series. 

Let M be a noetherian right module over a ring R . The basic dimension of 
M over R , denoted by BdimR(M) , is the least n 2 -1 such that M admits 
an n-basic composition series. Our first result outlines some of the properties of 
the basic dimension. The proof is an immediate consequence of the analogous 
result for Krull dimension and will be omitted. 

Proposition 1.1. Let M be a noetherian right module over a ring R . 
(a) If N is a submodule of M then 

Bdim,(M) = max{Bdim,(N) , Bdim,(M/N)) . 
(b) If r-ann,(M) # 0 then BdimR(M) = -1 ; and if R is prime, the converse 

is true. 
(c) If R has right Krull dimension and M is finitely generated over R ,  then 

Bdim,(M) 5 Kdim,(M) 5 Kdim(R) . 

Recall that a ring R with right Krull dimension is said to be right weakly ideal 
invariant if, given any two-sided ideal T and finitely generated right R-module 
M such that Kdim(Mj < Kdim(R/T), then Kdim(M 8, T) < Kdim(R/T) . 
As was indicated in the Introduction, noetherian rings which are not weakly 
ideal invariant do exist. However, if the basic dimension is used instead of 
Krull dimension, then all noetherian rings are weakly ideal invariant. In fact, 
as the next proposition shows, they satisfy an even stronger condition. 

Proposition 1.2. Let M be a finitely generated right module over a right noethe- 
rian ring R . If T is a two-sided ideal of R then Bdim,(M) = Bdim,(M@, T) . 
Proof. Without loss of generality suppose that M is cyclic and let M 2: R / I  , 
for some right ideal I of R . Since M 8 T 2: T I I T ,  it is sufficient to show 
that Bdim,(T/I T) = Bdim,(R/I) . By Proposition 1.1(a) we have 

Bdim,(R/ I T )  = max{Bdim,(R/ T) , BdimR(T/I T)) 
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and 
Bdim,(R/IT) = max{Bdim,(R/I) , Bdim,(I/IT)) . 

Since Bdim,(R/T) = Bdim,(I/IT) = -1 by Proposition 1.1 (b), it follows that 
Bdim,(T/IT) = Bdim,(R/IT) = Bdim,(R/I) , as desired. 

Proposition 1.3. Let M be a finitely generated right module over a prime right 
noetherian ring R . 

(a) Bdim,(M) = Kdim(R) i fand  only if M is not a torsion module. 
(b)If R is commutative or FBN then Bdim,(M) equals -1 if M is torsion, 

and equals Kdim(R) otherwise. 
Proof. This is a consequence of [7, Proposition 1.41, according to which M is 
torsion if and only if Kdim(M) < Kdim(R) . Thus if M is torsion, Bdim,(M) 
5 Kdim(M) < Kdim(R) . On the other hand, if Bdim,(M) < Kdim(R) , then 
for each factor Mi/Mi-, in a basic composition series of M ,  either 

or 
Kdim(Mi/Mi-,) 5 Bdim,(M) < Kdim(R) . 

In either case Mi/Mi-, is torsion, hence so is M .  Finally (b) holds because if 
R is FBN then M is torsion if and only if r-ann,(M) # 0 .  

Let R be a right noetherian ring and M a finitely generated right R-module. 
If P is a prime ideal of R ,  set Bdim(M, P) = Bdim,,,(M/MP) . If X C 
Spec(R) then we will extend the previous notation and write Bdim(M, X)  = 
sup{Bdim(M, P): P E X )  . It is Bdim(M, P )  that we will use to formulate 
and prove the results of later sections. The next corollaries follow immediately 
from Propositions 1.1 and 1.3. 

Corollary 1.4. Let M be ajni tely  generated right module over a right noetherian 
ring R . If P is a prime ideal of R then 

(a) -1 5 Bdim(M, P )  5 Kdim(M/MP) 5 Kdim(R/P) . 
(b) Bdim(M, P )  = -1 i fand  only if r-ann,(M/MP) # P . 
(c) Bdim(M, P )  = Kdim(R/P) if and only i f  M I M P  is not torsion over 

R I P .  

Corollary 1.5. Let M and R be as in Corollary 1.4. If X Spec(R) and N 
is a submodule of M then 

(a) Bdim(M, X)  5 Kdim(R) . 
(b) Bdim(M/N, X)  5 Bdim(M, X )  5 max{Bdim(N, X)  , Bdim(M/N, X)). 

Throughout this section let R be a right noetherian ring and M a finitely 
generated right R-module. If I c R ,  set V(I) = { P  E Spec(R): I C P )  and 
W(I) = { P  E Spec(R): I $ P ) .  Recall that the patch topology on Spec(R) is 
the topology which has a subbasis of closed sets consisting of V(I) and W(I) 
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for each two-sided ideal I of R . There is a very neat description of the patch- 
closed sets which will be given in the next proposition. 

Proposition 2.1. A set X C Spec(R) is patch-closed if and only if any prime in 
Spec(R) which is an intersection of prime ideals in X belongs to X .  

Proof. Clearly V(I) and W(I)  satisfy this condition. We prove the converse. 

Suppose that X C Spec(R) satisfies this condition and let X' be its complement 

in Spec(R) . For each Q E X', let IQ= n { P  E X:Q G P )  . By definition 

Q c I, and so Q E V(Q)n W(IQ). Since V(Q) n W(IQ)c X' it follows that 

X' is the union of such subsets, each of which is open in the patch topology. 

Hence X' is open, and X closed, in the patch topology. 


If X is patch-closed and t an integer, write X,= { P  E X:r-Kdim(R1P) 2 
t) . Note that Spec(R) is always patch-closed, and so too is the J-Spec of a 
commutative ring. The next proposition indicates that in the noncommutative 
case J-Spec should include the primitive ideals of the ring. Recall that an ideal 
P of R is right primitive if there exists a faithful simple right RIP-module. 

Proposition 2.2. If Bdim(M, P )  = -1 for every right primitive ideal P of R ,  
then M = 0 .  

Proof. Suppose that M # 0 and choose a two-sided ideal I of R maximal 

with respect to having M # M I .  Let N be a maximal submodule of M 

with M I  c N and let P = r-ann,(M/N) . Then P is right primitive and, 

since M P  c N ,  and I 5 P we have r-ann,(M/MP) = P .  Therefore, by 

Proposition 1.4(b), Bdim(M, P )  # -1, a contradiction. 


Now let J-Spec(R) be the set of all prime ideals of R which are intersections 
of right primitive ideals. In other words, J-Spec(R) is the smallest patch-closed 
subset of Spec(R) which contains all the right primitive ideals of R .  Notice 
that J-Spec(R) contains also the left primitive ideals of R ; in fact it is the 
smallest patch-closed set which contains these ideals. See [6, pp. 192-1 961 for 
details. The elements of Spec(R) will be called J-primes. 

The importance of patch-closed sets lies in the following property: if X C 
Spec(R) is patch-closed and J-Spec(R) G X then Bdim(M, X)= Bdim(M, P) 
holds for only finitely many primes P E X . The crucial step in the proof of 
this and other finiteness properties of the basic dimension is isolated in the next 
theorem. First a technical lemma. 

Lemma 2.3. Let L c N be submodules of M with NIL critical. If I is a 

two-sided ideal of R and I @ r-ann(N/L), then Kdim(N + M I I L  + M I )  < 

Kdim(N1L) . 

Proof. Since I @ r-ann(N/L) , then N I  @ L . Hence Kdim(N1NI + L) < 

Kdim(N/L) by the criticality of NIL.  Thus Kdim(N1N n ( M I  + L))  5 

Kdim(N/NI + L) < Kdim(N1L) , as required. 


Theorem 2.4. Let R be a prime right noetherian ring and M be a finitely 

generated right R-module. Suppose that Bdim(M, 0) 5 s , for some integer 




848 S. C. COUTINHO 

s 2 0 ,  and let X be an infinite set of nonzero prime ideals of R such that 
Bdim(M, P )  2 s for each P E X . Then 

n { p :  P E X)# O .  

Proof. If Bdim(M, 0) = -1 then I = r-ann,(M) # 0 and since Bdim(M, P )  
2 0 for P E X , it follows that I c n{P:  P E X) as required. Thus we may 
assume that Bdim(M, 0) = n # -1 . Let 

be an n-basic composition series of M . Let Ji = r-ann,(Mi/Mi-, ) , and 
J = n{Ji :  Ji# 0 and 1 5 i 5 v )  . We claim that J c n{P:  P E X). Since, 
clearly, J # 0 ,  this is enough to show that the conclusion of the theorem holds. 
We proceed to prove the claim. 

Let P E X . One of the hypothesis of the theorem is that Bdim(M, P) 2 s . 
Applying 1.5(b) to the series (2.5) we conclude that, for some i , 

Bdim(Mi + MP/Mi-,  + M P ,  P) 2 s. 

However, if J, p P ,  then Mi + MP/Mi-, + M P  is unfaithful as an RIP-
module so has basic dimension -1 . Also, if Ji = 0 ,  then using Lemma 2.3 
one shows that Bdim(Mi + MP/Mi-, + MP ,P) < s . Hence, for some i , 
0 # J, c P , and therefore J c P . The claim now follows immediately. 

Corollary 2.6. Let X be a patch-closed subset of Spec(R) and let t 2 0 be an 
integer. Then there are only finitely many prime ideals P E X,-X,,,with 

Bdim(M, P )  2 max{O, Bdim(M, X,,,)). 
Proof. Suppose that the result is false. Then the set 

is infinite. Let Q be an ideal maximal among the intersections of infinitely 
many elements of Y . Then Q is prime and Kdim(R1Q) > t . Further, since 
X is patch-closed, Q E X,. Let Y' = { P  E Y: Q c P )  ; by the choice of 
Q ,  Y' is infinite. Passing to the quotient ring R / Q ,  we can assume that 
Q = 0 .  Applying Theorem 2.4, we get n{P:  P E Y') # 0 ,  which contradicts 
the maximality of Q . 
Corollary 2.7. Let Kdim(R) < oo. If M # 0 then 

holds for only finitely many J-primes P . 

Proof. This is a simple induction using Corollary 2.6. Note that since M # 0 ,  

Bdim(M, J-Spec(R))2 0 by Proposition 1.1. 


In this section we review the results of [ l  1, $21 concerning homomorphisms 
from a projective module to a finitely generated module. Let M be a finitely 
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generated right module over a right noetherian ring R and F a finitely gener- 
ated projective right R-module. First we recall some standard notation. Let P 
be a prime ideal of R and &(RIP) the quotient ring of R I P .  Then 

P ( M 9 P )  = lengthg(Rlp) (MIMP @Rip Q(RIP)) 

is called the reduced rank of M at P . If R is prime, we will write pR(M) 
instead of p ( M ,  0) . Now set 

g F ( M , p ) = O  i f p ( M , P ) = O  

=cc i f p ( M , P ) # O b u t p ( F , P ) = O  

= p ( M  , P ) / p ( F ,P )  otherwise. 

Define g F ( M ,  P )  to be the smallest integer greater or equal than z F ( M ,  P )  . 
Notice that if F = R then g R ( M ,P) = g ( M ,  P) , in the notation of the 
introduction, Similarly z R ( M ,  P )  = g^(M,P) = p ( M  , P)/p(R , P )  is the nor- 
malised rank of M at P .  

There is another way of defining g F ( M ,  P )  which is sometimes useful. Set 
gF(M) to be the smallest integer n such that F" maps onto M ,  or gF(M) = 

cc if no such integer exists. Then it is readily checked that 

where G = FIFP gRIpQ(R/P) .  These definitions appeared originally in 
Warfield's paper [14], but we follow the notation of 1111. The following prop- 
erties of z F ( M ,  P )  are easily checked: if N is a submodule of M ,  then 

(3.1) g F ( M ,  P )  5 g F ( N ,  P )  + g F ( M / N ,  P) and 

(3.2) if R is prime then g F ( M ,  0) = g F ( N ,  0) + gF(Mlili, 0) .  

Inspired by the Forster-Swan Theorem we would like to show that gF(M) 
can be bound above by means of {gF(M,  P ) :  P E Spec(R)) . However, the 
following example from [ l  11 shows that this is not always possible. 

Example 3.3. Let A be a simple, noetherian, nonartinian ring and k a field. 
Set R = A @ k , F = 0 @ k and let M be a simple A-module on which' k acts 
trivially. Then g ( M ,  0) = 0 for all prime ideals P of R ,yet gF(M) = oo . 

Thus it will be necessary to impose some condition on the projective module 
F to guarantee that M is 'finitely generated' in the sense that there exist Bi E 
Hom(F,M )  for which M = Bi(F) . This is done by the following definition 
from [ l l ] .  A finitely generated projective R-module F is said to cover M if 
every simple image of M is also a simple image of F . Notice that if F covers 
M then it covers every homomorphic image of M . 
Proposition 3.4 [ l  1, Lemma 2.31. gF(M) < oo ifand only i f  F covers M 

An immediate consequence of Proposition 3.4 is that if F covers M then 
g F ( M ,  P )  is always finite for all prime ideals P of R .  Note that a free 
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module covers every finitely generated R-module. Other situations for which 
this condition is automatic can be found in [ l  1, Lemma 2.11. 

We finish this section with some more notation. The first is a generalisation 
of the stable rank of a module. We define sF(M) by saying that sF(M) 5 s 
if given any integer r > s and homomorphisms 8, , . . . , 8, E Hom(F , M )  for 
which M = C';8 , (F) ,  then there exist 6, E End(F) such that 

I 


Next we define the function which will give the upper bound of the Forster- 
Swan inequality. Let P be a prime ideal of R , set 

b F ( M , P ) = g F ( M , P ) + K d i m ( R / P )i f g F ( M , P ) # O ,  

= Bdim(M, P) + 1 otherwise. 

This differs from Stafford's notation in [ l  11; he has bF(M, P) = 0 if g F ( ~ ,  P )  
= 0 .  Note that if gF (M , P) # 0 then gF (M , P)+Kdim(R/P) 2 Bdim(M, P )  
+ 1 and that equality holds if g F ( M ,  P )  = 1 . For a subset X of Spec(R) , let 

We can now write the inequality we are aiming at as 

Throughout this section let M be a finitely generated right module over a 
prime right noetherian ring R and let F be a finitely generated projective right 
R-module. We begin with a generalisation of the well-known fact that if J is 
a right ideal of R then there exists x E J with uniform dimension(xR) = 
uniform dimension( J )  . 
Proposition 4.1. Let I be a nonzero two-sided ideal of R and let a ,  p E 
Hom(F , M )  . Then there exists 6 : F -, FI such that 

p,(M/(a + P6)(F))= max{p,(M/a(F) + P ( F ) )9 P,(M) - P,(F)). 
Proof. Clearly the right-hand side is less or equal than the left-hand side. We 
prove the other inequality. Note that, since we are only interested in reduced 
ranks, the module M can be assumed to be torsion free. Now choose 6 :  F -, 
FI such that p, ( (a  + P6) ( F ) )  is as large as possible. Without loss of generality, 
replace a by a + P 6 .  If Ker(a) = 0 ,  then a(F)2: F and 

Thus 6 = 0 will be satisfactory. 
Now suppose that Ker(a) # 0 and that p,(a(F) + P ( F ) / a ( F ) )  # 0 .  In 

particular a ( F )  is not essential in a ( F )  + P ( F )  . Choose a uniform submodule 
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D c P ( F )  such that D n a ( F )  = 0 .  Let k be a nonzero element of Ker(a) . 
Since F is projective, there is a map q:  F -, R with q(k) # 0 .  Hence 
DIq(k)R # 0 , since R is prime. Therefore P(g)iq(k) # 0 for some g E F 
with P(g)  E D and i E I .  Define 6 :  F + FI by f + giq( f ) .  Then 
0 # P(g)iq(k)E D n (a+ P6)(F) . Since D is uniform a ( F )  + D/(a  + P6)(F)  
is torsion. Thus p,((a+ /36)(F)) = p,(a(F)) + 1 , which contradicts the choice 
of a . Hence p,(a(F) + P ( F ) / a ( F ) )= 0 ,  which completes the proof. 

An easy induction argument yields the following result. 

Corollary 4.2. Let I be a nonzero two-sided ideal of R .  If M = C",,(F) for 
8, E Hom(F,  M )  then there exist 6, E Hom(F , F I )  such that 

The next proposition is the analogue for Bdim, (M) of Proposition 4.1. 

Proposition 4.3. Let I be a nonzero two-sided ideal of R .  Suppose that M 
is torsion and that a ,  /3 E Hom(F , M )  satisfv Bdim,(M/a(F) + P(F) )  < 
Bdim, (M) . Then there exists 6 : F + FI such that 

Bdim,(M/(a + /36)(F))< BdimR(M). 
Proof. By Proposition 1.1 (a), Bdim,(P(F I))5 Bdim, (M)  . Let 

be a basic composition series of P(FI) and consider the inductive statement: 
A(i) : There exists 6 E Hom(F , FI) with Bdim,(M/N, + ( a  + PS)(F)) < 

Bdim,(M) . 
Note first that 

since I c r-ann(a(F)+ P ( F ) / a ( F )+ P ( F I ) ). Therefore by Proposition 1.1 (b) 

and so A(s) holds with 6 = 0 .  Note also that A(0) is the result at which we 
aim. 

Suppose now that A(i) is true for some 0 < i 5 s .  We aim to show that 
A(i - 1) is also true. Let 6 E Hom(F,  F I )  be as in A(i) . Without loss of 
generality we can replace a by a + PS . 

Let Li = r-ann(Ni/Ni- , )  . If Li # 0 then 

and so 
BdimR(M/Ni-, + a ( F ) )  < BdimR(M). 

Therefore, we can assume that Li = 0 .  Since M is torsion, Ker(a) # 0 .  
Thus, since F is projective, there exists k E Ker(a) and q E Hom(F , R) with 
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y(k) # 0. Hence N,Rq(k)R $ N,-, . Choose x E Ni such that xy(k) 4 N,-, , 
and note that x = P(g) for some g E F I .  Now define 6:  F -, FI by 
f -, sr(f>.Then 

Since N,/N,-, is critical this implies that 

Of course Ni + (a+ P6)(F)= Ni + a(F), and so a + P6 satisfies 

as required. 

Corollary 4.4. Let I be a nonzero two-sided ideal of R .  Suppose that M is 
torsion and that 6, , . . . , 8, E Hom(F , M )  satisfy Bdim,(M/ CS 8,(F)) < 
Bdim, (M) . Then there exist 6, , . . . , 6, E Hom(F, FI) such that 8 = 8, + 
~f Oidi satisjes 

Bdim,(M/B(F)) < Bdim,(M) . 
Proof. Consider the following inductive hypothesis: 

A(j) : Let M be a finitely generated torsion right R-module. Let 8, , . . . , 6, 

E Hom(F , M )  with Bdim,(M/ C;8,(F)) < Bdim,(M) . Then there exist 
6, , . . . , S, E Hom(F , FI) such that 8 = 8,+C: 8,6, satisfies Bdim, (M/B(F)) 
< Bdim,(M) . 

The case j = 2 is given by Proposition 4.3. Suppose now that A ( j )  is true 
for all j 5 s - 1 . We prove that A(s) is also true. Assuming that the hypothesis 
of A(s) holds, let M' = M/B,(F) .  For 4 :  F 4 M let 4 denote the induced 
map F 4 M' . Suppose now that dim,(^') = dim,(^'/ CiB,(F)) . Then 
dim,(^') = ~ d i r n , ( ~ ' /CiB i ( ~ ) )< Bdim,(M) , and so Bdim,(M/B, (F)) 

< Bdim,(M) . Therefore the result follows if we set 6, = . . . = 6, = 0 .  
Suppose that dim, (MI/  < dim,(^') . By induction, there exist Cig i ( ~ ) )  

y, , . . . , y, E Hom(F, FI) such that if 4 = 8, + Ci Oiyi, then 

Bdim,(M) 2 =dim,(^') > ~ d i m , ( ~ ' / ? ( ~ ) )BdimR(M/B1(F)+ $(F)). 

Another application of the induction hypothesis yields a A E Hom(F , FI) such 
that Bdim, (M/(B, + $A) (F))< Bdim, (M) . The result follows if we set 6, = A 
and 6, = yiA for 3 5 i 5 s , completing the proof of A(s)  . 

5. THEMAIN THEOREM 

Throughout this section let M be a finitely generated right module over a 
right noetherian ring R and let F be a finitely generated projective right R- 
module. We begin by rephrasing Corollary 4.2 in terms of g F ( ~ ,  P )  . 
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Proposition 5.1. Let P be a prime ideal of R such that 0 < g F ( ~ ,P) < m. 
Let I be a two-sided ideal of R such that I $ P .  If M = Ci O,(F) for 
6, E Hom(F ,M) then there exist 6, E Hom(F ,FI) such that 

We now combine Propositions 5.1 and 4.4 to show that bF(M, P) can be 
reduced simultaneously at a finite number of prime ideals. 

Lemma 5.2. Let P, , .. . ,P, be prime ideals oj* R with 0 < bF(M, Pi) < m 
for 1 5 i I m . Suppose that M C P i ( ~ )  8, E Hom(F, M )  . Then there = for 
exist 6,, .. . ,6, E End(F) such that if 8 = 6, + C P i d i  then 

for 1 5 i I m .  
Proof. The proof is by induction on m . Note that m = 0 is trivial. Suppose 
that P, , .. . , P, are ordered so that if Pi 5 Pi then i > j . By induction 

we can assume that 6,, . . . ,6, have been chosen such that $ = 6, + Oidi 
satisfies 

b F ( M / $ ( ~ ) ,  Pi) 5 bF(M, Pi)- 1 

for 1 5 i < m - 1 . Note that M = $(F)+ O,(F). 
Let I = P, n . . . n P,-, , then I f 0 (mod P,) . We now consider two 

cases. First suppose that gF(M, P,) # 0 ,  then by Proposition 5.1 choose 
65, ... , 6,' E Hom(F , FI) such that 6 = $ + 6,s; satisfies 

On the other hand, if g F ( ~ ,  P,) = 0 then choose 65, ... ,6,' E Hom(F ,FI) 
by Corollary 4.4 such that 6 = $ + Ci 0~6; satisfies Bdim(M/O(F) ,P,) 5 
Bdim(M, P,) - 1 . In either case b F ( M / 6 ( ~ ) ,  P,) 5 bF(M, P,) - 1 . 

Finally since 6(F)  - $(F) (mod Pi) for 1 5 i 5 m - 1 , then 

for I s i s m .  

The next lemma shows that to prove the theorem we will have to deal with 
only a finite number of prime ideals. 

Lemma 5.3. Let Y = J - Spec(R). Suppose that r-Kdim(R) < m and that F 
covers M . If M # 0 then there are only Jinitely many J-prime ideals P for 
which bF(M, P) = bF(M, Y).  

Proof. If the result is false then there exists an integer t 2 0 such that bF (M, P) 
2 max{l ,bF(M, Y,,,)} for infinitely many P E Y, - Y,,, . Among all such 
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modules choose one, say M ,  for which t is a large as possible and, modulo 
this, such that bF(M, Y,,,) is as small as possible. 

If bF(M, Y,,,) = 0 then Bdim(M, Y,,,) = -1 . By Corollary 2.6 there 
are only finitely many primes P E Y, - Y,,, such that Bdim(M, P )  2 0 ,  
contradicting the hypothesis. So we can assume that bF(M, Y,,,) > 0 .  

Let P E Y, - Y,,, . Notice that if g F ( ~ ,  P) j 1 then 

bF(M , P )  = Bdim(M , P )  + 1, 

and if P also satisfies bF (M , P )  2 bF(M , Y,,,) , then 

Bdim(M, P )  2 Bdim(M, Y,,,) . 
Thus by Corollary 2.6 there are only finitely many P E Y,- Y,,, with g F ( ~ ,  P )  

-< 1 and bF(M , P )  2 bF(M,  Y,,,) . In particular the set X = { P  E Y, -
Y,,, : g F ( ~ ,P )  2 2 and bF(M,  P )  2 bF(M, Y,,,)} is infinite. 

Our choice of t implies that bF(M, Q) = bF(M, Y,,,) for only finitely 
many Q E Y,,, . Since F covers M ,  g F ( ~ )  < oo by Proposition 3.4. Thus 
by Lemma 5.2 there exists 0 E Hom(F,  M )  such that b F ( M / O ( ~ ) ,  Y,,,) j 

bF(M, Y,,,) - 1. On the other hand if P E X then 

g F ( M / e ( ~ ) ,P) 2 g F w ,  P )  - 1 2 1. 

Hence b F ( M / O ( ~ ) ,  P) > b F ( M / O ( ~ ) ,Y,,,) for P E X , which contradicts 
either the maximality of t or the minimality of bF ( M ,  Y,,,) . 

We can now prove the following generalisation of the Forster-Swan Theorem. 

Theorem 5.4. Let M be a finitely generated right module over a right noetherian 
ring R with finite right Krull dimension. Let F be a jnitely generated projective 
right R-module that covers M . Then 

sF (M) 5 bF (M , J-Spec(R)). 
Proof. Let Y = J-Spec(R) . We proceed by induction on bF (M,  Y) . If 
bF(M, Y) = 0 then M = 0 by Proposition 2.2. By Proposition 3.4 we have 
that M = C; 0,(F) for 0, E Hom(F,  M )  . Suppose that s > bF(M, Y) > 0. 
By Lemma 5.3 there are only finitely many J-primes P for which bF (M, P) = 

bF(M, Y) . Thus by Lemma 5.2 there exist 6, E End(F) such that if 0 = 

0, + Xi 0,6, and R = M / 0 ( F )  then b F ( Z ,  Y) 5 bF(M, Y) - 1 .  Note that 
-
M = Cig i ( ~ ),where the bar denotes the canonical homomorphism M -,x. 
So s - 1 < b F ( R ,  Y) . Thus by induction there exist qi E End(F) such that 
-
M = (g,+~Q,)(F)~ i - '  . Hence 

s- 1 

M = C ( 0 j+ ' ,g)(F),  
1 

where q, = 6, - qidi. 
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Corollary 5.5. Let R ,  M ,  F be as in the theorem. Then 
(a) s(M) _< b(M, J-Spec(R)). 
(b) s(M) 5 sup{g(M, P) +Kdim(R/P) : P E J-Spec(R)) . 

Proof. (a) is the theorem with F = R .  Since 

b(M, P)  I g ( M ,  P) +Kdim(R/P) 

for every P E J-Spec(R), (b) is an immediate consequence of (a). 

Another immediate consequence of Theorem 5.4 is the following result of 
Wafield [14]. 

Corollary 5.6. Let R be an FBN ring with finite right Krull dimension, then 

s(M) 5 s u p { g ( ~ ,P): P E J-Spec(R)) 

where 
$(M, P) = g ( M ,  P)  +Kdim(R/P) i f g ( M ,  P) # 0 ,  

= 0 otherwise. 

Since a commutative noetherian ring is FBN, Corollary 5.6 enables us to 
recover the original result of Eisenbud and Evans [4]. 

We will end with an illustrative example drawn from [ l l ] .  Recall that the 
first Weyl algebra over Z ,denoted by A, (Z) , is the Z-algebra generated by x 
and y under the relation xy -yx = 1 . 
Example 5.7. Let R = A, (Z), M = RIxR and X = Spec(R). Then: 

(a) sup{g(M, P)  +Kdim(R/P): P E X and g ( M ,  P )  # 0) = 2 . 
(b) There are infinitely many P E X with g ( M ,  P) +Kdim(R/P) = 2 .  
(c) b(M, Spec(R)) = b(M, 0) = Bdim(M, 0) + 1 = 3 .  

This example shows that, if our definition of b F ( ~ ,P )  were replaced by 
that of Stafford [ l l ] ,  as described at the end of $3, then Lemma 5.3 would fail. 

Proof. We first recall a few elementary facts about the prime ideals of R ,  see 
[9] for details. The height one primes of R are all of the form pR ,for a prime 
p + 0 of Z . Also pR +xP R and pR +xPR +yP R are primes. Therefore we 
have a chain 

O C ~ R C ~ R + X ~ R C ~ R + X ~ R + ~ ~ R .  
Since Kdim(R) = 3 ,  the factors of R by the prime ideals of this chain must 
have Krull dimensions 3, 2, 1 and 0, respectively. 

If P = 0 or if P is a prime ideal of height one, then M/MP is torsion over 
RIP  and so g ( M ,  P )  = 0 .  For any other prime ideal, if g ( M ,  P) # 0 then 
g ( M ,  P) + Kdim(R/P) 5 2 .  However if P = pR + xPR for some prime p , 
then 

MIMP = RIxR +pR 2. X'R +pR 2. x P - l ~+ p ~ / x ' f l ~  +pR/P  

for 1 5 i 5 p - 1 . We also have that xP-' R +pR/P is a uniform right ideal 
of R I P .  Hence p ( M ,  P )  = 1 ,  p(R,  P) = p and b(M, P) = g ( M ,  P) + 
Kdim(R/P) = 2 .  This proves (a) and (b). 
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To prove (c) it is enough to show that Bdim(M, 0) = 2 .  Notice that 
xA, (Q)is a maximal right ideal of A, (Q). Thus any proper factor N of 
R/xR is annihilated by some nonzero integer. It then follows from the pre- 
vious paragraph that Kdim(N) 5 1 . However since R/xR is faithful and 
Kdim(R/xR) = 2 ,  any submodule of R/xR is faithful and has Krull dimen- 
sion 2. Thus Bdim(M, 0) = 2 ,  as required. 
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