
A CONSTRUCTIVE PROOF OF THE DENSITY OF ALGEBRAIC
PFAFF EQUATIONS WITHOUT ALGEBRAIC SOLUTIONS

S. C. COUTINHO

Abstract. We present a constructive proof of the fact that the set of algebraic

Pfaff equations without algebraic solutions over the complex projective plane

is dense in the set of all algebraic Pfaff equations of a given degree.

1. Introduction

The computation of first integrals is an important topic in the theory of ordinary
differential equations, and also in its applications to mechanics and physics. Various
methods have been devised to compute such integrals. Of these, the one introduced
by G. Darboux [7] in 1870, for equations of the first order and the first degree,
in dimension two, has proved particularly effective. Indeed, as Prelle and Singer
showed in [12], this leads to a procedure that can be used to compute elementary
first integrals for such equations. The key to Darboux’s method is the existence of
a large enough set of algebraic curves invariant under the equation one wishes to
solve.

Unfortunately, as Jouanolou showed in [9, théorème 1.1, p. 158], first order
equations of degree n ≥ 2 rarely have any invariant curves whatsoever. Jouanolou’s
result can be easily stated in the language Pfaff equations, as follows. Let Pn be
the vector space of algebraic Pfaff forms of degree n over the complex projective
plane P2. Since two Pfaff forms that differ by a nonzero constant multiple define
the same equation, the set of Pfaff equations can be identified with P(Pn).

Theorem 1.1. The set of algebraic Pfaff equations of degree n ≥ 2 over P2 that
do not have an algebraic solution is dense in P(Pn).

For the definition of the degree of a Pfaff equation see section 2. Jouanolou’s
proof of this result has two parts. First, he uses basic geometry of projective
varieties to show that the set of Pfaff equations without algebraic solutions is either
empty or dense in P(Pn). Then he gives an explicit example of an equation without
algebraic solutions. The hardest part of the proof consists in showing that the given
equation does not have any algebraic solutions. Since then, several different proofs
of the same result have appeared, for example [3, Theorem, p. 900], [11, section
3.2, p. 224], [1] and [8].
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In this paper we present a new, constructive proof, of Theorem 1.1. By that
we mean a proof that allows one to construct an explicit example of an equation
without algebraic solutions in any neighbourhood of Pn. Indeed, given such a
neighbourhood, we construct an example of a Pfaff equation with coefficients in
the field of gaussian numbers, that does not have any algebraic solutions. The
construction is explicit and can be implemented as an algorithm. Our approach
is arithmetical, and the equations we construct are very similar to Jouanolou’s
example when reduced modulo a certain prime.

2. Pfaff equations over the projective plane

In this section we discuss some basic facts about Pfaff equations over the pro-
jective plane P2 = P2(C). Let n ≥ 0 be an integer, and denote by x, y and z the
homogeneous coordinates of the projective plane P2. A Pfaff form of P2 is a 1-form
Ω = Adx + Bdy + Cdz, where A, B and C are nonzero homogeneous polynomials
of degree n + 1 that satisfy the identity xA + yB + zC = 0. A Pfaff equation is
an equivalence class of nonzero Pfaff forms modulo multiplication by nonzero con-
stants. A singularity of Ω is a common zero of A, B and C. We denote the set of
singularities of Ω by Sing(Ω). If Sing(Ω) is finite then Ω is saturated.

A nonconstant homogeneous polynomial F ∈ C[x, y, z] is an algebraic solution
of Ω if there exists a 2-form Θ such that

(2.1) Ω ∧ dF = FΘ.

In this case we also say that the curve C = Z(F ) ⊂ P2 is invariant under Ω.
Let Uz be the open set of P2 defined by z 6= 0 and let ω be the dehomogenization

of Ω with respect to z. If πz : Uz → C2 is the map given by πz[x : y : z] = (x/z, y/z),
then Ω = zkπ∗z(ω), where k is chosen so as to clear the poles of π∗z(ω). Moreover, if f
is the dehomogenization of a homogeneous polynomial F ∈ C[x, y, z], and assuming
that F is not a constant multiple of a power of z, then F is an algebraic solution
of Ω if and only if

(2.2) ω ∧ df = fθ,

where θ is the dehomogenization of Θ. An f that satisfies (2.2) is also called an
algebraic solution of ω. Thus, if our aim is to study algebraic solutions, we can
switch between Pfaff forms over P2 and 1-forms over Uz

∼= C2.
For reasons that will become clear later it is preferable to state our results in

terms of 1-forms over C2. Thus, let ω = adx + bdy, where a, b ∈ C[x, y]. Note that
if Ω is as above, then

a(x, y) = A(x, y, 1) and b(x, y) = B(x, y, 1).

It follows from the relation xA + yB + zC = 0, that

(2.3) a = yh + a0 and b = −xh + b0,

where h is a homogeneous polynomial of degree n, and a0 and b0 are polynomials
of degree at most n. The number n is called the degree of ω, and also of Ω. Note
that, if h 6= 0, then

n = deg(a)− 1 = deg(b)− 1,

Consider now the space Pn of Pfaff forms of degree n, which corresponds to the
nonzero triples (A,B,C) of homogeneous polynomials of degree n + 1 that satisfy
the identity xA + yB + zC = 0. It follows from the discussion above that Pn can
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be identified with the set of nonzero (h, a0, b0) where h is homogenous of degree n
and a0 and b0 are polynomials of degree at most n. Thus, Pn ∪ {0} is isomorphic
to the affine C-space of dimension (n + 1)(n + 3).

The question whether h is zero or nonzero is quite significant for us, because if
it is zero the line at infinity is invariant under Ω. Therefore, in this case, the Pfaff
form always has an algebraic solution. This explains why we always assume that
h 6= 0. Note, however, that any Pfaff form of Pn can be easily approximated by
one with h 6= 0.

For our purposes it is more convenient to think of the elements of Pn as cor-
responding to 1-forms ω = adx + bdy, such that a and b are given by (2.3). In
particular, if ω is a generic element of Pn then gcd(a, b) = 1; so that its homoge-
nization Ω is saturated. A singularity of ω is a common zero of a and b. The set
of all the singularities of ω is denoted by Sing(ω). Because we are assuming that
ω is saturated, it follows from Bézout’s theorem that this is a finite set. Although,
Sing(ω) need not be equal to Sing(Ω), the two sets coincide if Sing(Ω) has empty
intersection with the line at infinity L∞. Indeed, in this case, every zero of A and
B is also a zero of C because xA+yB + zC = 0. From now on, we assume that the
coordinates of P2 have been chosen so that Sing(Ω) ∩ L∞ = ∅ for the Pfaff form Ω
that is under consideration.

The following result was first stated and proved in [4, Theorem 3.1]. Since our
main construction is based on it, we include a sketch of its proof.

Theorem 2.1. Let a0, b0 be polynomials of degree at most n in Q[x, y]. Suppose
that h ∈ Q[x, y] is a nonzero homogeneous polynomial of degree n, and write

a = hy + a0 and b = −hx + b0.

If the ideal (a, b) ∩ Q[x] is generated by a polynomial of degree n2 + n + 1 that is
irreducible over Q, then ω = adx+ bdy does not have any algebraic solutions in P2.

Proof. Since we are assuming that (a, b)∩Q[x] is generated by an irreducible poly-
nomial of degree n2 + n + 1 over Q, it follows that the polynomial of Q[x] whose
roots are x-coordinates of the points in Sing(ω) is irreducible of degree n2 + n + 1
over Q. However, the Pfaff form Ω, obtained by homogenizing ω, has at most
n2 + n + 1 singularities on P2. Therefore, all the singularities of Ω lie in C2 and
have multiplicity one. Moreover, by the Baum-Bott Theorem, the eigenvalues of
the 1-jets of ω at each one of its singularities have an irrational ratio. This implies
that a singular point of an algebraic solution of ω must be a node.

Now consider an algebraic curve C ⊂ C2 invariant under ω. The absolute Galois
group G of Q acts on C and leaves ω invariant. In particular, the image Cσ of C
under σ is also an algebraic curve invariant under ω. Thus, if C is not defined over
a finite extension of Q, then ω has infinitely many algebraic invariant curves; hence
it has a first integral by [9, Theoreme 3.3, p. 102]. Since this integral is defined
over Q, we have obtained an invariant curve with coefficients in Q. Otherwise, C is
defined over a finite algebraic extension of Q. Hence, there are only finitely many
Cσ, for σ ∈ G, and their union is an invariant algebraic curve of ω with coefficients
in Q. Whatever the case, we end up with an algebraic curve defined over Q and
invariant under ω. Therefore, from now on, we may assume that C itself is defined
over Q.

By [9, Proposition 4.1, p. 126] C must contain, at least, one singularity of ω.
However, the group G acts transitively on the first coordinates of the singularities
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of ω. Hence, it also acts transitively on the singularities themselves. But C is
stable under G, so it must contain all the singularities of ω. Moreover, since the
separatrices of ω are smooth and transversal at all of its singular points, it follows
that C is either a smooth curve, or a singular curve with n2 + n + 1 nodes. We
must show that both these cases lead to a contradiction.

Let d be the degree of the curve C. If C is smooth, then by [2, Proposition 4, p.
532],

d(n + 2) = d2 + n2 + n + 1,

which is not possible. Otherwise, C has n2 + n + 1 nodes, so that, d = n + 2 by [2,
Proposition 4, p. 532 and Proposition 7, p. 536]. However, by Bézout’s Theorem,

d(d− 1) ≥
∑

p∈Sing(C)

mp(mp − 1),(2.4)

where mp is the multiplicity of C at the singular point p. Since the curve is nodal,
mp = 2. Taking this into (2.4), together with d = n + 2, we find that

(n + 2)(n + 1) ≥ d(d− 1) ≥ 2(n2 + n + 1);

which holds only for n ≤ 1. This establishes the final contradiction and concludes
the proof of the theorem. �

3. Reduction modulo p

The constructive proof of Theorem 1.1 that we give in section 4 consists in
writing, for any given open set U of Pn, an explicit Pfaff form without algebraic
solution that is contained in U . In order to prove that this Pfaff equation does not
have algebraic solutions we use Theorem 2.1. This leaves the problem of how one
checks the hypotheses of Theorem 2.1 for a Pfaff form that, no matter how carefully
constructed, must be quite generic. To get around this problem we use reduction
modulo p, as explained in this section.

We begin with a property of prime numbers. Let n ≥ 1 be an integer. We say
that a prime p is n-good if

(1) p ≡ 3 (mod 4), and
(2) every prime divisor of n2 + n + 1 divides p2 − 1.

Lemma 3.1. There are infinitely many n-good primes for every n ≥ 2.

Proof. Let Q be the square-free factorization of n2 + n + 1, and consider the arith-
metic progression

Pk = (2Q + 1) + 4Qk, where k is a positive integer.

Since gcd(2Q + 1, 4Q) = 1, it follows from Dirichlet’s Theorem on primes in arith-
metic progressions that there are infinitely many primes of the form Pk. Moreover,
Pk ≡ 3 (mod 4); while

P 2
k − 1 = (Pk − 1)(Pk + 1) = 4Q(2k + 1)(Q(2k + 1) + 1),

is divisible by Q. Therefore, each prime of the form Pk is n-good. �

As usual, the ring of gaussian integers will be denoted by Z[i]. Recall that p ≡ 3
(mod 4) if and only if x2 + 1 is irreducible module p. Hence,

Zp[i] = Zp[x]/(x2 + 1),

is a field for such a p. If a ∈ Z[i], its image in Zp[i] will be denoted by a.
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Before we prove the main theorem of this section we need a technical lemma
concerning resultants.

Lemma 3.2. Let n ≥ 2 be an integer and let a0 and b0 be polynomials of degree at
most n in Z[i][x, y]. If h ∈ Z[i][x, y] is homogeneous of degree n, and h(0, y) 6= 0,
then

deg(Resy(hy + a0,−xh + b0)) ≤ n2 + n + 1.

Proof. To simplify the notation, let

a = hy + a0 and b = −xh + b0.

Since xa + yb = xa0 + yb0, it follows that

Resy(xa, b) = Resy(xa0 + yb0, b),

by [5, Exercise 7, p. 76]. But by [5, Exercise 3, p. 73],

Resy(xa, b) = Resy(x, b)Resy(a, b) = xnResy(a, b),

because b has degree n with respect to y. Thus,

n + deg(Resy(a, b)) = deg(Resy(xb0 + ya0, b)) ≤ (n + 1)2,

since both xa0 + yb0 and b have total degree at most n + 1. Therefore,

deg(Resy(a, b)) ≤ (n + 1)2 − n = n2 + n + 1,

as required. �

Theorem 3.3. Let n ≥ 2 be an integer, p an n-good prime, and ζ ∈ Z[i] a number
whose residue modulo p generates the group of nonzero elements of Zp[i]. Suppose
that a0 and b0 are polynomials of degree at most n in Z[i][x, y], and that h ∈ Z[i][x, y]
is homogeneous of degree n with h(0, y) 6= 0. If

(1) h ≡ xn (mod p);
(2) b0 ≡ yn (mod p); and
(3) a0 ≡ −ζ (mod p);

then the Pfaff form of P2 induced by ω = (hy +a0)dx+(−xh+ b0)dy does not have
an algebraic solution.

Proof. As we did in the previous proof, let

a = hy + a0 and b = −xh + b0,

and write

I = (a, b) ∩Q[x].

By the definition of resultant, the polynomial R = Resy(b, a) belongs to I. Now, if

(3.1) R is irreducible of degree n2 + n + 1,

then, by Theorem 2.1, the Pfaff form of P2 induced by adx+ bdy does not have any
algebraic solutions, as required. Therefore, we need only prove that the resultant
R satisfies (3.1). This is where we use reduction module p.
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We begin by computing the reduction R of R module p. Reducing modulo p the
Sylvester matrix that corresponds to (b, a), we obtain

S =



−1 0 · · · xn+1 · · · 0 · · · 0 0 0
0 −1 0 · · · xn+1 0 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · −1 0 · · · 0 0 0 xn+1

0 0 · · · xn −ζ 0 0 · · · 0 0
0 0 · · · 0 xn −ζ 0 · · · 0 0
0 0 · · · 0 0 xn −ζ · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · xn −ζ


.

Thus,
R = Resy(b, a) = det(S) = (−1)n+1(xn2+n+1 − ζ

n
),

which is a polynomial of degree n2 + n + 1 in Zp[i][x]. Moreover, by [10, Theorem
16, p. 221], the polynomial xn2+n+1 − ζ

n
is irreducible in Zp[i] as long as ζ

n
is not

a q-th root in Zp[i] for any prime factor q of n2 + n + 1. We prove this last fact.
Assume, by contradiction, that there exists β ∈ Zp[i] such that ζ

n
= βq, with q

a prime factor of n2 + n + 1. Then,

(ζ
n
)(p

2−1)/q = (βq)(p
2−1)/q = 1.

Since ζ generates Zp[i] by hypothesis, it follows that q must divide n, which is
impossible because gcd(n, n2 + n + 1) = 1. Therefore, R is irreducible over Zp[i] of
degree n2 + n + 1.

In particular, we have that

deg(R) ≥ deg(R) = n2 + n + 1.

However, by Lemma 3.2, the opposite inequality also holds. Hence,

deg(R) = deg(R) = n2 + n + 1.

Since R is also irreducible, we conclude that R itself is irreducible. This shows (3.1)
and completes the proof of the theorem. �

4. Proof of Theorem 1.1

Given a set V of Pn, open with respect to the analytic topology, we can choose
an element in V of the form α/g, with

α = (hy + a0)dx + (−hx + b0)dy,

where a0 and b0 are polynomials of degree less than or equal to n in Z[i][x, y],
0 6= h ∈ Z[i][x, y] is homogeneous of degree n, and g is a nonzero integer.

By Lemma 3.1, there are infinitely many n-good primes. Let p be one of them
and choose ζ ∈ Z[i] such that ζ generates the group of units of Zp[i]. Define,

ĥ = xn + pkh

â0 = −ζ + pka0

b̂0 = yn + pkb0,
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and
α̂k = (ĥy + â0)dx + (−xĥ + b̂0)dy.

By Theorem 3.3, α̂k does not have any algebraic solutions. On the other hand,

α

g
−

(
α̂k

1 + pgk

)
=

η

1 + pgk
(4.1)

where
η = (y(h− gxn) + a0 + gζ)dx + (−x(h− gxn) + b0 − gyn)dy.

Since η does not depend on k, it follows from (4.1) that

α̂k

1 + pk
→ α

g
when k →∞.

Therefore, α̂k/(1+ pgk) ∈ V , for k � 0; which completes the proof of the theorem.

5. An algorithm

Recall from section 2 that the space Pn of Pfaff forms of degree n ≥ 2 can
be identified with the set of nonzero triples (h, a0, b0), where h is a homogeneous
polynomial of degree n and a0, b0 ∈ Sn. Thus

Pn ∪ {0} ∼= R(n+2)(2n+3)

under the identification given above. In particular, the norm ‖·‖∞ is defined in Pn,
and every Zariski subset of Pn is closed under the topology defined by this norm.

We finish with an algorithm, based on the proof of Theorem 1.1 given in the
previous section, that explicitly computes a 1-form without algebraic solutions in
a neighbourhood of any given 1-form with coefficients in Q[i].

Algorithm 5.1. Given an integer L ≥ 2 and a 1-form α = α/g, where α =
(hx + a0)dx + (−hy + b0)dy has coefficients in Z[i], g ∈ Z, and h(0, y) 6= 0, the
algorithm computes a 1-form α̂ and a nonzero integer β, such that:

• ‖α− α̂/β‖∞ < 1/L and
• the Pfaff form of P2 obtained by homogeneizing α̂ does not have any alge-

braic solutions.
Step 1: Let n = deg(α).
Step 2: Factor n2 + n + 1 and let Q be the product of its prime factors taken

with multiplicity one.
Step 3: Choose a prime p in the arithmetic progression (2Q+1)+4Qk, where

k ≥ 1 is an integer.
Step 3: Choose ζ ∈ Z[i], such that ζ is a primitive root of unity in Zp[i], and

an integer

m >
L

g2p
sup {‖h− gyn‖∞, ‖a0 − gζ‖∞, ‖b0 − gyn‖∞}

Step 4: Set

ĥ = xn + mph,

â0 = −ζ + mpa0,

b̂0 = yn + mpb0,
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and return
(ĥy + â0)dx + (−xĥ + b̂0)dy

1 + mpg
.

This algorithm has been implemented in the computer algebra system Axiom,
see [6]. Experiments have shown that the required primes in the arithmetic progres-
sion at Step 3 occur at such large numbers, that it is better to run a simple-minded
search for an adequate p among all the primes of the form 4n+3. Axiom is available
for download from

http://page.axiom-developer.org/zope/Plone;
while the implementation of the algorithm can be found at

htt://www.dcc.ufrj.br/~collier/folia.html.
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