ON SOME FOLIATIONS ARISING IN D-MODULE THEORY

S. C. COUTINHO

ABSTRACT. We describe the properties of some foliations which arise in the
study of the characteristic variety of D-modules constructed from vector fields
of an affine space.

1. INTRODUCTION AND MOTIVATION

In a paper [14] of 1878 G. Darboux proposed a method for finding a first inte-
gral of a differential equation in terms of the algebraic curves tangent to the vector
field that defines that equation, the invariant algebraic curves of the vector field.
Darboux also pointed out the importance of studying the singularities of the dif-
ferential equation to the analysis of the invariant algebraic curves. Darboux’s ideas
were taken up in the 19th century by Poincaré and have recently flourished in the
work of several mathematicians, among them Jouanolou [23], Cerveau and Lins
Neto [6], Carnicer [5] and Walcher [31].

Using the language of algebraic geometry we may generalize invariant algebraic
curves to higher dimensional varieties. Let X be a smooth complex algebraic va-
riety over which a one dimensional foliation F has been defined. Such a foliation
corresponds to a map f : Q4 — £, where Q% is the sheaf of Kéhler differentials
and £ is a line bundle over X. Dualizing this sequence and tensoring it up with
£, we get a homomorphism Ox — £~! ® ©x. Thus, the foliation F may also be
defined by a section of the sheaf £7! ® ©x. A point = € X is a singularity of F if
f is not surjective at x. The set of all singularities of F will be denoted by Sing(F).
A subscheme Y of X is invariant under f if there exists a map Q1. — L]y such
that the diagram

£l
Qkly ——=Lly

"

Qy

is commutative. For more details see [13]. The study of invariant algebraic subva-
rieties in this more general setting has been considered by Soares [28], [29], Esteves
[17], and Esteves and Kleiman [18], [19], among others.
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In this note we study the singularities (section 2) and invariant algebraic sub-
varieties (section 3) of foliations of P™ x P™ induced by hamiltonian vector fields
determined by bihomogeneous polynomial functions of C**! x C"*! that are linear
on the ys. The motivation for studying so special a case comes from the interplay
between symplectic geometry and the theory of D-modules.

A D-module is a module over a ring of differential operators of a smooth complex
algebraic variety X. Since these rings are noncommutative, their modules often
have a very rich structure, which can be studied with the help of a very important
geometric invariant, the characteristic variety, which is a subvariety of the cotangent
bundle T* X. The cotangent bundle has a natural symplectic structure, relative to
which the characteristic variety of a D(X)-module has to be co-isotropic; see [20]
or [8] for more details.

The most important special case of this construction is arguably that of the ring
of differential operators of the complex affine space A™. As has been shown in
[30], [3], [9], [10] and [15], quotients of these rings by cyclic left ideals generated
by operators of order one are an excellent source of examples of D(A™)-modules
with various interesting properties. It turns out that such modules have for their
characteristic varieties hypersurfaces defined by polynomials that are linear in the
fibres.

More precisely, if z1, ..., z, are coordinates of A™ and 1, ..., y, the correspond-
ing conjugate coordinates on the fibres of T*A"™, then these polynomials can be
written in the form f = Y"1, a;y;, where a; € Clz1,...,z,] for 1 <i < n. In this

case, the hamiltonian vector field {; induced by f has the form given in equation
(2.1). The co-isotropy implies that the characteristic variety of any submodule or
quotient of a module whose characteristic variety has equation f = 0 is invariant
under &;.

By construction, these characteristic varieties are always conical, that is homoge-
neous with respect to the ys. So, introducing a new variable zy, we can homogenize
both £¢ and f with respect to the xs. The resulting vector field of C**! x C" in-
duces a foliation in X = P™ x P*~ !, which leaves the hyperplane x¢ = 0 invariant.
Since this hyperplane is naturally isomorphic to P! x P*~!, the foliation that & ¥
induces on it is an example of the kind of foliation we propose to study in this note.
This particular foliation plays an important role in the solution of a conjecture of
Bernstein and Lunts, see [11].

For another interesting example, we turn to conormal varieties. Keeping the
notation above for the coordinates, let I be a homogeneous ideal of Clz1,...,z,]
and consider the conormal variety Y with support on Z C A", the variety of zeroes
of I. In other words, Y is the closure in the cotangent bundle of A™ of the conormal
bundle of Z\Sing(Z). A polynomial vector field of A™ gives rise to a regular function
on its cotangent bundle. Moreover, if Z is invariant under such a field then the
corresponding map f vanishes on Y. This implies that Y is invariant under the
hamiltonian vector field £;. Since I is homogeneous with respect to both the xs (by
hypotheses) and the ys (by construction), it determines a variety Y of P*~1 x P*~1,
Assuming that f is homogeneous in the s, it follows that £ induces a foliation
P"~1 x P*~! that leaves Y invariant. For more on conormal varieties and their
relevance to the theory of D-modules see [7, 49ff], [24, chapter 2] and [12].

2. SINGULARITIES
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2.1. Definitions and notation. Let n be a positive integer and a = (aqg, . ..,a,)
be an n-tuple of homogeneous polynomials in Clzy,...,z,], all of which have the
same degree deg(a) = k > 2. If

ha:Zaiyi7 da:Zai£7 and A4; :Z%yj
i=0 = ; 2oz,

then the bihomogeneous vector field
(2.1) la=dy — i: A'i
M a — a Pt 3 ayl .

defines a foliation of P™ x P™ which we denote by F,, while ®, will stand for the
foliation of P™ induced by d,. We will write 7, and w5 for the projections of P™ x P™
on its first and second factors, respectively. Under these hypotheses, &, is a global
section of T, ®¢, Tx, where

Ty = OX(k — 1,0) = ﬂ'T(O[pm (k — 1)) ®ox W;(O]pm),
is called the tangent sheaf of F,. This sheaf fits into an exact sequence
0—=>Ta —>Tx —Na—0,

where T’y is the tangent sheaf of X. The cokernel N, is called the normal sheaf of
Fa.

2.2. Singularities of Poincaré type. Let [p] x [q] € P" x P" be a singularity of
Fa. It follows from the definition given in section 1 that this is equivalent to saying
that [p] x [g] is a zero of the two by two minors of the matrices

[ao an} and [Al An}

To - T Y1 Yn

In particular, [p] € P" is a singularity of ®,. We proceed to analyse the singularities
of F,. More precisely, we aim to show that, under certain hypotheses, the 2n-tuple
= (p1,-..,un) of eigenvalues of the 1-jet of F, at a singularity [p] x [q] satisfies
the following conditions:

(1) p is nonresonant;

(2) none of the ratios of these eigenvalues is real.

Since GL;4+1(C) acts transitively in P™, there exists g € GL,4+1(C) such that
g - [p] = [eo], where e; € C"! denotes the vector all of whose coordinates are zero,
except for the i-coordinate, which is equal to one. Then,

_l9 0
= 0| espetm+ 1.0,

the symplectic group over C. Thus, performing on F, the change of coordinates
induced by G, we end up with a foliation which is still of the form (2.1). So we
may assume that F, has a singularity at p = [eg] We will dehomogenize F, in
order to study the local behaviour of invariant varieties in the neighbourhood of
the singularity [p] x [¢]. Without loss of generality, we may also assume that the
first coordinate of g is nonzero. Performing the dehomogenization, we obtain the

vector field
L . 0 IR ~\ 0
Fa= 3 @ = wi) 5= 37 (A —udo) -

i=1 j=1
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where the circumflex means that the corresponding polynomial has been dehomog-
enized by taking o = 1 and yo = 1. Since p = [eg] is a singularity of @, it follows
that

61(0) = (a, — 1‘121\0)(0) =0.
Moreover, a; — xlgfl& € (z1,...,2,), for some linear form ¢; € Clzg,...,z,], so
that

0 if i>1

2.2 El = a; = -
22) ®) ®) {Zo (p)  otherwise.

Since the number ¢y (p) appears quite often in what follows, we denote it by .. Next
we must compute the 1-jet of F at [p] x [¢] . But

das
az:) - (k - 1)xlg_2€i - xg_lgi(p) S (l‘l, L. ,Z‘n).
Thus, taking (2.2) into account,
da; ) ) 0
aZO (p) =0 for i >0, while 8—22(17) = ko
Since the first n terms are independent of the ys, the 1-jet can be written in the

form

J1 0
* —JQ
where J; and Jy are n x n matrices. A straightforward computation shows that the

i entry of Jy satisfies

52(0) = ao(0)  ifi=j

8161'
(J1)ij =
ggj (0) otherwise.
Thus, denoting by Jp the jacobian of (ai,...,a,), we can write

J1 == J() - ao(O)In = JO - Oz[n
where I, denotes the n x n identity matrix. Turning now to Js,

2 0)—ka ifi=3j

ox;
(J2)ij =
% (0) otherwise.
Hence,
Jo = Jb — kal,

Therefore the eigenvalues of J are of the form A—a or —A+ka for some eigenvalue
A of Jy. Note that the coefficients of ¢; can be chosen arbitrarily, so that both «
and the As can take any value whatsoever.

Writing A1, ..., A, and a to denote the As and « corresponding to the singularity
[p] x [q], the 2n-tuple of eigenvalues of the 1-jet of F, at [p] x [q] is

(2.3) T(p,q) = (M —a,...;  n —a,—A\1 + ka, ..., =\, + ka),

For the purposes of this note we will say that the singularity [p] x [¢] of Fa is of
Poincaré type if

(1) A1,..., A, « are linearly independent over Q; and
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(2) the ratios
Ai —
A —
for every 1 < i < j <n and all choices of v,v" € {1,k}.

eC\R

Proposition 2.1. If the singularity [p] X [q] of Fa is of Poincaré type then the
2n-tuple 7(p, q) is nonresonant.

Proof. Suppose that one of the eigenvalues of F, at [p] x [q], say u, satisfies a reso-
nance relation. Taking into account our previous characterisation of the eigenvalues
of Fa at a singularity, we conclude that there must exist positive integers ¢; and
m; such that

p=Y_ (N — ) +mi(=A; + ka).
i=1

Collecting the terms corresponding to the same As,

n

o= Z —mj)A; —Z(qj — kmj)a.

i=1

Now let
0 if u=M—«a
e(p) = :
1 if p=-X\+kaq,
for some 1 < ¢t < n. Since the A\1,...,\,, a are linearly independent over Q, it
follows that,
(1 i =t
s =
% ’ 0 otherwise.
Hence,
> (g —kmy) =Y (1= kymy + (—1)°").
i=1 i=1
Therefore,

ij—e ) so that Zm]—i—ZqJ—l

no matter what p is. But this implies that the qs and ms do not define a resonance
relation, contrary to what had been assumed. (Il

Let X, 1 be the projectivization of the complex vector space of n-tuples of ho-
mogeneous polynomials of degree k in C[xzo,...,x,]. We will define two subsets of
Xp,k from which foliations are going to be chosen. First, let P, ; be the subset of
those a € X,, ;, that give rise to a foliation F, of P x P™ all of whose singularities
are of Poincaré type. The second set corresponds to those a € P, ;, for which ag is
irreducible and (aq, ..., a;,) is the irrelevant maximal ideal of C[zy,...,z,]. This
last set will be denoted by V,, j.

Proposition 2.2. Both P, ; and V,  are dense subsets of Xy k.
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Proof. The proof that P, ;, is a dense subset of X,, j, is analogous to the proofs of
similar results in [25, p.668ff] and [28, Theorem 2, p. 144], and will be omitted. In
order to prove that V, j is also dense in X,, ;, we consider the set
Up ik ={a € X,k : ao is irreducible and (ag, ..., an) = (2o,...,Zn)}
The density of V,, ;, follows from the inclusion
Prok NUnk C Vg,
if we prove that U, , is an open nonempty subset of X,, . In order to do that, let
Yo = {[al x [p] 1 a(p) = 0} C Xy o X P".
If ¢ is the projection of X,, ;, x P™ on its first factor then

Fo g, = {la] € Xox : dim((¢ly, )~ ([a])) > 0}

is closed in X, . Since [§ : -+ : 2¥] does not belong to this set, its complement is

a nonempty open subset of X, . Let Si be the homogeneous component of degree
k of C[zg, ..., zy]. A similar argument shows that

Gnr={la] € X :ao(p) =0 = Vay(p) for some pe P} C P(Sk)
is also closed in X,, ;. Since an n-tuple with ag = xk + .-+ zF does not belong to

Gk, it follows that
un,k = xn,k \ (Fn,k: U Gn,k)

is an open nonempty set of X,, ; as we wished to prove. [

2.3. Some global properties. Before we proceed to the local analysis of &,, let
us consider the effect of Poincaré type singularities on the hypersurface Z(h,) itself.
We retain the notation used in §2.2 and write

v(n,d) =d" +d" '+ +d+1.

It follows from [29, Remark 3.2, p. 498] that this is the number of singularities of
a nondegenerate holomorphic foliation of degree d defined in P™.

Proposition 2.3. If all the singularities of Fa are of Poincaré type, then
(1) Z(ha) is smooth;
(2) Sing(Fa) Z Z(ha);
(3) #Sing(Fa) = (n+ N)v(n,d);

where, d = deg(®,) = deg(a;) — 1 for every 0 < i < mn.

Proof. In this proof we use the notation and results established in §2.2. We need
only argue over what happens at one singularity of F,, which can always be taken
to be of the form [eg] x [¢]. Moreover, since we are assuming the singularities to be
of Poincaré type, there exists a linear change of variables in the xs such that the

matrix Jy is diagonal with eigenvalues A1,...,A,. In these coordinates, we have
that

aai

oz, (e0) = Aidij,

for 1 < ¢,7 < n, where §;; is Kronecker’s delta symbol. This linear change of the
x-coordinates gives rise to a symplectic change of coordinates in C**! x C"*1. We
proceed by explicitly computing these singularities.
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If [eo] x [q] is a singularity of Fa, then the coordinates of [¢] are zeroes of the
equations

(2.4) yjAi(p,y) —yidj(p,y) =0 forall 0<4,j<n;
which, when j = 0, become

0 =1y0Ai(p,y) — ¥ Ao (P, y) = yoyi(Ni — ka),

by our choice of the z-coordinates. In particular, if yo # 0 then y; = 0 for all
1 < i< m;so[q] = [eo] is a solution of the system (2.4). If, on the other hand,
yo = 0, then the equations we have to consider are

0=y,A4:(p.y) — vidi(p,y) = y;v: (N — X))

for all 1 < i < j < n, whose zeroes are the points [e;], for 1 < ¢ < n. Therefore,
[eo] % [q] is a singularity of Fa if and only if [¢] = [e;] for 0 < j < n.

Turning now to (1), let us consider a singularity of Z(ha). Since the change of
coordinates used above is symplectic, we may assume that this singularity is of the
form [eg] % [g], for some [q] € P". Thus, [¢] must be a zero of

Oha

Oha
a—(eo) =a;(e0) =0 and ——(ep) = Aj(eo,q) =0,
Yj

(2.5) o

for all 0 < j < n. In particular, [eg] X [¢] must be a singularity of F, which is of
Poincaré type by hypothesis. This implies that o # 0 by (2.2). However, by (2.3),
ap(ep) = a, which contradicts (2.5) when j = 0.

In order to prove (2), recall that if [eg] is a singularity of ®,, then ®,(eg) is
collinear with eg as vectors in C**1. Thus,

ha(leo] X [e;]) = aj(eo) = djo00;

s0 Z(ha) contains all but one of the singularities of T in 5 ' ([eo]).

Finally, Poincaré type implies that the singularities of ®, in P™ are all nonde-
generate. Therefore, by [29, Remark 3.2, p. 498], ®, has d® +d" 1 + .- +d +1
singularities, where d is the degree of ®,. But the above argument implies that, for
each [p] € Sing(®,) there are exactly n + 1 points [g] € P™ such that [p] x [q] are
singularities of F,, and this proves (3). O

Note that we could easily have computed the number of singularities of F, using
the Baum-Bott Theorem; see [2]. However, this seemed pointless, since we also
needed to determine the coordinates of the singular points, and that immediately
gives a method to count the singularities.

2.4. Germs of invariant subvarieties. We now turn to the behaviour of certain
invariant subvarieties in the neighbourhood of a Poincaré type singularity p of &,.
We may choose local coordinates such that p = (0,...,0). Let D be a derivation
that represents &, in this neighbourhood. Keeping to the notation used in 2.2, the
eigenvalues of the 1-jet of D at p can be written in the form

Al —Q, ..., A\p —a,— A1 + ka, -+ — A\, + ka,

where k£ > 2 is an integer. Moreover, since p is of Poincaré type, a, A1,..., A\,
are linearly independent over Q. In particular, the eigenvalues are nonresonant by
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Proposition 2.1. Thus, by Poincaré’s Theorem [1, p. 175], D can be written, after
a formal change of variables, in the form

(2:6) D= ;()‘z - O‘)IiaTgi — (A — ka)yi@7
where z1,...,Zn,Y1,-.-,Yn is a formal coordinates system at p. For the remainder

of this subsection we assume that D is of the form (2.6). We need a technical lemma
concerning the eigenvectors of D.

Lemma 2.4. Let p and D be as above. The monomials %y and xﬁlgﬂ/ belong to
the same eigenspace of D if and only if

B=B=v=7 1BI=1f] and |+|=]l,
where |u| denotes the sum of the entries of the integer vector w. In particular, an

etgenspace that contains a pure power of a variable is one dimensional.

Proof. Let A denote the vector (A1,...,A,). Then, 2Py7 is an eigenvector of D for
the eigenvalue

(N, B =) +alky — 8|

Since Ay, ..., A, are linearly independent over Q, the monomials %37 and a:ﬁly'y,
have the same eigenvalue if and only if
(2.7) B—y=p—9" and |ky—B|=I[ky - p,

which are equivalent to the conditions stated in the lemma. Thus a monomial
27y?" has the same eigenvalue as 27 if and only if

re;=p -~ and —r=|ky 73|
The first equation implies that
B;»:’y;:O for all j # 4.

Taking this into account the two equations above become

r=p3—7 and —r=ky - B

(2

Since k > 1, it follows that 8] = r and ] = 0 as we wished to prove. The proof for
the power y] is analogous and will be omitted. (]

The next result is a variant of [26, §2.4, Lemma, p. 543] that has been adapted
to the needs of this paper.

Proposition 2.5. Let a € P, and assume that Y and Z are subvarieties of
P™ x P™ invariant under F,. If dim(Y) + dim(Z) = 2n and Z is smooth at a point
of Y NZ, then Y is also smooth at this point.

Proof. For the sake of simplicity we will suppose that a € P,, ;. has been fixed and
drop it from the notation. Now let

p €Y NZC Sing(d).

If Z is smooth at p, we may choose local coordinates z1, ..., z2, of P* x P™ at p
such that Z is given by z; = --- = 2, = 0 in these coordinates. Let I be the ideal
of Y in the local ring O, of p and let J = (z1,..., 2) and 7= 61,], be the ideals of
Z and Y in the completion 61,. Denote by D the derivation that F defines on 6p.
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Since J is invariant under D, it induces a derivation D in
C[[Zl, ey Zgn]]/J = C[[Zr+1, ey Zgn]]

Applying Poincaré’s Theorem to D, we can assume, without loss of generality, that
there are distinct eigenvalues pi,41, ..., po, of the 1-jet of D at p, such that

2n

i=r+1

Since (I 4 J)/J is zero dimensional, it contains a polynomial in C[z], for each
r+1 < i < 2n. These polynomials are mapped inside (I + .J)/J by D and each
power of z; is an eigenvector of D associated to a different eigenvalue. Therefore,
cach one of these powers belong to (I +.J)/J. Thus, if r +1 < i < 2n, there exists
a polynomial g; € T of the form

.
gi = 2 +Z%‘Zj el
=1

for some integer ¢ > 0 and a;1,...,a; € 6,,. Writing g; as a sum of components,
each one of which is a polynomial in a different eigenspace of O, under D, and
taking into account that D(g;) € I, the usual argument shows that each one of

~

these components belongs to I. However, by Lemma 2.4, no monomials in the
support of Z;=1 aijzj can have the same eigenvalue as z{ because i ¢ {1,...,7}.
Therefore, 2! € 1. Moreover, since I is radical, so is :f, see [21, Scholie 7.8.3 (vii),

p. 215]. Hence, (zp41,-..,2n) € I. Thus, Y is smooth at p, and the proof is
complete. (I

3. INVARIANT SUBVARIETIES

In this section we discuss various properties of subvarieties invariant under F,.
We assume throughout the section that

ha = aoyo + -+ + anyn € Clzo, ..., Tn, Yo, - - -, Yn]

is a bihomogeneous irreducible polynomial. Moreover, h, will be called well-chosen
if for some triple (i, j, k) € N3 of pairwise distinct integers,

e (a;) and (a;, a;) are prime ideals;

e a; ¢ (a;) and ay, ¢ (a;,a;);

L] (ao,...,an) = (1‘0,...,$n).
By permuting the y variables, we can always assume that ¢ =0, j =1 and k = 2
in the above definition. Indeed, from now on we assume that such a permutation
has been performed whenever necessary.

3.1. Complete intersections. We begin with an elementary result in commuta-
tive algebra.

Lemma 3.1. If h, is well-chosen then the ideals (ha) and (ag, ha) are both prime
in Clzg, ..., Tny Yoy - - Yn]-
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Proof. Since hj, is linear in the ys, it follows that it can only be factored in the form
b\, where b € C[xzg,...,z,] and X is linear in the ys. However, this would imply
that b is a common divisor of the as, which is not possible because ag is irreducible.

We now turn to the ideal (ag, ha). Let 7 be the restriction to Z(ag, ha) of the
projection of P xP™ on its first factor. Since ag is irreducible, so is the hypersurface
Z(ag) of P™. Moreover, the fibre

7 ([p]) = Z(ha(p,y)) C P,

is linear, therefore irreducible for all [p] € Z(ap). So the fibres have dimension n —1
whenever ha(p,y) # 0. But ha(p,y) = 0 as a polynomial in Clyo,...,y,] if and
only if a;(p) = 0 for all 0 < j < n. This implies, by the Projective NullstellenSatz,
that (ag,...,an) # (o,...,Tn), contradicting the hypotheses. Thus Z(ag, ha) is
an irreducible variety by [22, Theorem 11.14, p. 139].

In order to finish the proof we need only prove that (ag, ha) is a radical ideal.
Suppose that g™ € (ag, ha) for some g € Clzg,...,Zn,Yo,--.,Ys] and some integer
m > 0. Since Clzo,...,2,]/(a0) is a domain, there exists an integer ¢ > 0 and
polynomials ¢, € Clzg ..., Zn,, Yo ., Yn] such that

a‘ig = qha +7 (mod (ap))

and the polynomial r» does not contain any monomial with a positive power of y;.
Thus,

P = (alg)™  (mod (a0, ha).
Hence, g™ € (ag, ha) implies that
(3.1) r™ =bhy (mod (ag)),
for some polynomial b. If
b=bsy; +---+byp (mod (ap)),
then it follows from (3.1) and the choice of r that bsa; =0 (mod ag). This implies

that b = 0 (mod agp), so r™ = 0 (mod ap). Since (ap) is a prime ideal, it follows
that 7 = 0 (mod ap) and that
(3-2) a1g = gha (mod (ao)).

Moreover, we may choose the smallest ¢ for which this last congruence holds. If
{ =0 we are done; so let £ > 0 and let us aim at a contradiction.

The minimality of £ implies that there exists at least one coeflicient in g that does
not belong to (a1, ap); otherwise we could cancel a; in (3.2). Order the monomials
in y lexicographically subject to yo > y3 > --- > y, and let y* be the largest
monomial in the support of ¢ whose coefficient g, does not belong to (ag,ar). It
follows from (3.2) that gyae € (ap,a1). Since h, is well-chosen, it follows that
Ga € (ag,aq); which contradicts our choice of o and completes the proof of the
theorem. O

Proposition 3.2. If h, is well-chosen then all irreducible subvarieties of codimen-
sion one in Z(ha) are schematic complete intersections.

Proof. Since h, is well-chosen and has degree one, it follows that (ha) is prime
in Clzg,...,Zn,Y0,---Yn|. In particular, B = Clzg,...,Zn, Yo, ---Yn]/(ha) is a do-
main. But by Nagata’s factoriality lemma, if B,, is a factorial domain and ay is
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prime in B then B is factorial; see [27, Théoréme 5, p. 31] or [16, Lemma 19.20, p.
487]. However,
Bao = (C[l’(), e 7wn]a0 [yh cee 7yn}

is a factorial domain by [27, Théoréme 4, p. 29 and Corollaire 1, p. 23] and (ag, ha)
is a prime ideal by Theorem 3.1. Therefore,

B/(ao) = C[Io, <oy Ty Yo, - yn]/(a()a ha)

is a domain. Hence, (ap) is prime in B and, by the factoriality lemma, B is a
factorial domain, from which the desired result follows. O

3.2. Invariant hypersurfaces. Throughout this subsection we assume that h, is
well-chosen, as defined at the very beginning of this section.

Theorem 3.3. Let Y be a subvariety of codimension one in Z(ha) invariant under
Fa. If all the singularities of Y are normal crossings then Y = Z(ha,g) for some
bihomogeneous polynomial g whose bidegree (¢,£') satisfies £ < n or ¢’ < n.

Proof. In order to simplify the notation write Z = Z(h,) for the subvariety, X =
P™ x P™ for the multiprojective space and F for the foliation F,. The ideal sheaf
of Z in Ox is Iz = Ox(—k,—1), because h, has bidegree (k,1). Since wx =
Ox(—n —1,—n — 1), it follows that

wz 2wx®Iz,00720z(k—n—1,—n).

However, by adjunction,
(det Na)Y @ Ta & wyz,

where N, is the normal bundle of ¥ = F, and T, its tangent bundle; see § 2.1.
Hence,

(detNa)¥ =2 Oz(—n, —n).
By Proposition 3.2, there exists a polynomial g € Clxg,...,Zn, Y0, -, yn] of bide-
gree (¢,0') such that Y = Z(ha,g). Then Jy = Oz(¢,¢). But by [4, equation (3),
p. 600] Y can only be invariant under JF if

Jy ® (detNa)Y =2 Oz —n, l' —m)

is not ample, which implies that £ —n <0 or ¢ —n <0, and completes the proof
of the theorem. O

3.3. Invariant curves. We now turn to invariant curves. Recall that a curve
C in P" x P" has bidegree (a,b) if its class in the Chow ring A*(P"™ x P") is
as™t" "1 4+ bs" 1", where s and t are the generators of A*(P" x P"). Recall that
v(n,k) =k™+---+k+1 is the number of singularities of a nondegenerate foliation
of degree k in P™.

Theorem 3.4. Let a € P(n, k) for some k > 2. If C ¢ Z(ha) is a curve of bidegree
(a,b) that is invariant under Fa, then C is smooth and a + kb < (n + 1)v(n, k).

Proof. Tt follows from Proposition 2.5 that C' is smooth and transversal to the
hypersurface Z = Z(ha). The class of C' in the Chow ring of X is [C] = as™t" ! +
bs"~1t" while the class of Z = Z(h) is [Z] = ks + t. Thus,

(3.3) [C] - [Z] = (a+ kb).
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Since the intersection is transversal, we also have that [C] - [Z] = #(C' N Z). But if
two invariant varieties intersect at an isolated point, it must be a singularity of the
foliation, so

(3.4) #(CNZ)<#(Sing(Fa) N Z) < (n+ Lv(n, k),
where the last inequality comes from Proposition 2.3. The inequality of the theorem
follows by combining (3.3) and (3.4). O

When n = 2 we can also determine some bounds for invariant curves that are
contained in the hypersurface Z(ha). The first results we prove are concerned with
the variety V4 = Z(ha, A) where A = xoyo + x1y1 + T2y2.

Proposition 3.5. The variety V, is isomorphic to the blowup of P? at the singular
points of dy.

Proof. Let 7 be the projection of P? x P? on its first coordinate and denote by B
the blowup of P? at the singularities of da. We will prove that for every 0 < i < 2
there exists an isomorphism

¢i :Vana HU;) = Bna H(Uy),

where U; is the open set of P2 defined by x; # 0. The proposition follows from the
compatibility of these isomorphisms at the intersections U; N Uj, for 0 <@ < j < 2.
By symmetry it is enough to describe the construction of ¢; when ¢ = 0. Denoting
by f the polynomial obtained by setting g = 1 in f € Clxo, x1, Z2, Yo, Y1, Y2], We
can identify B N7~ !(U;) with the subset
Bo = {(z1,22) X [y1 : y2] | (@1 — w1G0)y1 + (@2 — T200)y2 = 0}
of C% x P!, and Vo N7~ 1(U;) with the subset

Vo = {(z1,22) X [yo : 91 : y2] | ha = A = 0},
of C? x P2. Under these identifications define
b0 : Vo = C? x P?,
by
Po((w1,72) X [Yo : y1 = y2]) = (w1, 72) X [y1 : Yal.
That this map is well defined follows from
0 = ha(1,21,22,90,0,0) = yp.

Moreover, since
2

Z(@ — 23G0)Yi = ha — apA = 0;

i=1
the image of ¢ is contained in By. A similar argument allows us to define the
inverse of ¢g by

(60) (w1, 22) X [y1 : 92]) = (¥1,22) X [—21y1 — T2y : Y1 : Vo).

The compatibility of the isomorphisms ¢; follows from a simple calculation that
will be left to the reader. O

As a consequence of this proposition we can immediately determine a number of
properties of V,.
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Corollary 3.6. V, is a smooth variety of dimension 2 birational do P2, whose
Picard group is
v(n,k)
Zh+ Y LE;,
i=1
where h denotes the hyperplane class and E;, for 1 <i <wv(n,k), are the classes of
the exceptional fibres.

For the remainder of this note we assume that a € Py j, for some integer k& > 2.
Recall that m; denotes the projection of P™ x P™ on its first factor and ®, is the
foliation induced by F, on P".

Theorem 3.7. Let C' be an irreducible curve contained in V4 and invariant under
Fa. If dim(7i (C)) = 1 then C is smooth and its class in Pic(V,) is
v(n,k)
dH + Y UE;
i=1
where 0 < d < k+2and 0<¥¢; <2.

Proof. The projection 71 (C) must be a curve invariant under the foliation ®, of P2,
and the hypotheses on a imply that the singularities of this curve must be normal
crossings; see [25, Proposition 2.5, p. 656]. Therefore, by [6, Remark, p. 891],
the degree of 71 (C) cannot exceed k + 2. Thus C, which is contained in the strict
transform of 71(C'), must be smooth. Moreover, the normal crossing condition
implies that 71 (C) has at most two branches at each of the singularities of d,.
Therefore, 0 < £; < 2 and the proof is complete. O

In order to apply this result to an invariant hypersurface of Z(h,) we need an
additional proposition.

Proposition 3.8. Let g be a bihomogeneous polynomial in Clxg, x1, T2, Yo, Y1, Y|
If Z(ha, g) is invariant under &, then

dim(71(Z(ha,g,A)) > 0.

Proof. One easily checks that £,(A) = ha, which implies that (ha, g, A) is invariant
under &,. Let Y = m1(Z(ha,g,A)) and suppose, by contradiction, that it has
dimension zero. Since A is invariant under the linear changes of variable described
in 2.2, we can assume, without loss of generality that Y NZ(z;) = 0 for every 1 < i <
n. But Y must be invariant under ®,, so it is a union of singularities of this foliation.
Thus, the ideal of Y in Clzg, 21, 2, Y0, y1,y2] is (V) = my N---Nmy, where the ms
are homogeneous maximal ideals corresponding to singularities of ®, in Y. Hence,
there exists a positive integer m such that (y;u)™ € (f, A, g), for every generator
of I(Y"). Taking y; = 0 for every j # 4 and y; = 1, we conclude that u € \/(a;, x;, 5;)
where (; is the coefficient of y! in g. Hence, my N--- Nm; C +/(a;, x4, B;). But z;
does not divide a;, so Z(a;,x;,3;) C P? cannot have positive dimension. Hence,
renumbering the ms, if necessary, we have an equality +/(a;, x;, 5;) = my N---Nm.
In particular, this implies that m;N- - -Nmg contains a power of z;, which contradicts
our choice of coordinates. ]

The following corollary is an immediate consequence of Theorem 3.7 and Propo-
sition 3.8.
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Corollary 3.9. Let C be a curve, contained in Z(ha), that is invariant under . If
the ideal generated by I(C) and A is a radical ideal, then C is the scheme theoretic
intersection of Z(ha) and Z(g), where g is a bihomogeneous polynomial of bidegree
(d,0) withd <k+2and0<¢<2.

We can also use these results to give a simpler proof of Lemma 5.1 of [11].

Corollary 3.10. If ®, has no invariant curve in P2, then

(1) Z(ha,g,A) = Z(ha, g);
(2) g =A™ (mod hy,) for some positive integer m.

Proof. Since the projection of Z(ha, g, A) on P? is invariant under ®,, the hypothe-
ses on h, imply that it must have dimension zero or two. Dimension zero is excluded
by Proposition 3.8; so dim 71 (Z(ha, g, A)) = 2, which implies that Z(ha, g, A) itself
has dimension two. Thus, A™ € (ha, g) for some positive integer m. O
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