
ON SOME FOLIATIONS ARISING IN D-MODULE THEORY

S. C. COUTINHO

Abstract. We describe the properties of some foliations which arise in the
study of the characteristic variety of D-modules constructed from vector fields

of an affine space.

1. Introduction and motivation

In a paper [14] of 1878 G. Darboux proposed a method for finding a first inte-
gral of a differential equation in terms of the algebraic curves tangent to the vector
field that defines that equation, the invariant algebraic curves of the vector field.
Darboux also pointed out the importance of studying the singularities of the dif-
ferential equation to the analysis of the invariant algebraic curves. Darboux’s ideas
were taken up in the 19th century by Poincaré and have recently flourished in the
work of several mathematicians, among them Jouanolou [23], Cerveau and Lins
Neto [6], Carnicer [5] and Walcher [31].

Using the language of algebraic geometry we may generalize invariant algebraic
curves to higher dimensional varieties. Let X be a smooth complex algebraic va-
riety over which a one dimensional foliation F has been defined. Such a foliation
corresponds to a map f : Ω1

X → L, where Ω1
X is the sheaf of Kähler differentials

and L is a line bundle over X. Dualizing this sequence and tensoring it up with
L−1, we get a homomorphism OX → L−1 ⊗ΘX . Thus, the foliation F may also be
defined by a section of the sheaf L−1 ⊗ΘX . A point x ∈ X is a singularity of F if
f is not surjective at x. The set of all singularities of F will be denoted by Sing(F).
A subscheme Y of X is invariant under f if there exists a map Ω1

Y → L|Y such
that the diagram

Ω1
X |Y

��

f |Y // L|Y

Ω1
Y

<<

is commutative. For more details see [13]. The study of invariant algebraic subva-
rieties in this more general setting has been considered by Soares [28], [29], Esteves
[17], and Esteves and Kleiman [18], [19], among others.
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In this note we study the singularities (section 2) and invariant algebraic sub-
varieties (section 3) of foliations of Pn × Pn induced by hamiltonian vector fields
determined by bihomogeneous polynomial functions of Cn+1×Cn+1 that are linear
on the ys. The motivation for studying so special a case comes from the interplay
between symplectic geometry and the theory of D-modules.

A D-module is a module over a ring of differential operators of a smooth complex
algebraic variety X. Since these rings are noncommutative, their modules often
have a very rich structure, which can be studied with the help of a very important
geometric invariant, the characteristic variety, which is a subvariety of the cotangent
bundle T ∗X. The cotangent bundle has a natural symplectic structure, relative to
which the characteristic variety of a D(X)-module has to be co-isotropic; see [20]
or [8] for more details.

The most important special case of this construction is arguably that of the ring
of differential operators of the complex affine space An. As has been shown in
[30], [3], [9], [10] and [15], quotients of these rings by cyclic left ideals generated
by operators of order one are an excellent source of examples of D(An)-modules
with various interesting properties. It turns out that such modules have for their
characteristic varieties hypersurfaces defined by polynomials that are linear in the
fibres.

More precisely, if x1, . . . , xn are coordinates of An and y1, . . . , yn the correspond-
ing conjugate coordinates on the fibres of T ∗An, then these polynomials can be
written in the form f =

∑n
i=1 aiyi, where ai ∈ C[x1, . . . , xn] for 1 ≤ i ≤ n. In this

case, the hamiltonian vector field ξf induced by f has the form given in equation
(2.1). The co-isotropy implies that the characteristic variety of any submodule or
quotient of a module whose characteristic variety has equation f = 0 is invariant
under ξf .

By construction, these characteristic varieties are always conical, that is homoge-
neous with respect to the ys. So, introducing a new variable x0, we can homogenize
both ξf and f with respect to the xs. The resulting vector field of Cn+1 × Cn in-
duces a foliation in X = Pn × Pn−1, which leaves the hyperplane x0 = 0 invariant.
Since this hyperplane is naturally isomorphic to Pn−1 × Pn−1, the foliation that ξf
induces on it is an example of the kind of foliation we propose to study in this note.
This particular foliation plays an important rôle in the solution of a conjecture of
Bernstein and Lunts, see [11].

For another interesting example, we turn to conormal varieties. Keeping the
notation above for the coordinates, let I be a homogeneous ideal of C[x1, . . . , xn]
and consider the conormal variety Y with support on Z ⊂ An, the variety of zeroes
of I. In other words, Y is the closure in the cotangent bundle of An of the conormal
bundle of Z\Sing(Z). A polynomial vector field of An gives rise to a regular function
on its cotangent bundle. Moreover, if Z is invariant under such a field then the
corresponding map f vanishes on Y . This implies that Y is invariant under the
hamiltonian vector field ξf . Since I is homogeneous with respect to both the xs (by

hypotheses) and the ys (by construction), it determines a variety Y of Pn−1×Pn−1.
Assuming that f is homogeneous in the xs, it follows that ξf induces a foliation

Pn−1 × Pn−1 that leaves Y invariant. For more on conormal varieties and their
relevance to the theory of D-modules see [7, 49ff], [24, chapter 2] and [12].

2. Singularities
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2.1. Definitions and notation. Let n be a positive integer and a = (a0, . . . , an)
be an n-tuple of homogeneous polynomials in C[x0, . . . , xn], all of which have the
same degree deg(a) = k ≥ 2. If

ha =

n∑
i=0

aiyi, da =

n∑
i=0

ai
∂

∂xi
, and Ai =

n∑
j=0

∂ha
∂xi

yj

then the bihomogeneous vector field

(2.1) ξa = da −
n∑
i=0

Ai
∂

∂yi
.

defines a foliation of Pn × Pn, which we denote by Fa, while Φa will stand for the
foliation of Pn induced by da. We will write π1 and π2 for the projections of Pn×Pn
on its first and second factors, respectively. Under these hypotheses, ξa is a global
section of Ta ⊗OX

TX , where

Ta = OX(k − 1, 0) = π∗1(OPn(k − 1))⊗OX
π∗2(OPn),

is called the tangent sheaf of Fa. This sheaf fits into an exact sequence

0→ Ta → TX → Na → 0,

where TX is the tangent sheaf of X. The cokernel Na is called the normal sheaf of
Fa.

2.2. Singularities of Poincaré type. Let [p]× [q] ∈ Pn × Pn be a singularity of
Fa. It follows from the definition given in section 1 that this is equivalent to saying
that [p]× [q] is a zero of the two by two minors of the matrices[

a0 · · · an
x0 · · · xn

]
and

[
A1 · · · An
y1 · · · yn

]
.

In particular, [p] ∈ Pn is a singularity of Φa. We proceed to analyse the singularities
of Fa. More precisely, we aim to show that, under certain hypotheses, the 2n-tuple
µ = (µ1, . . . , µ2n) of eigenvalues of the 1-jet of Fa at a singularity [p]× [q] satisfies
the following conditions:

(1) µ is nonresonant;
(2) none of the ratios of these eigenvalues is real.

Since GLn+1(C) acts transitively in Pn, there exists g ∈ GLn+1(C) such that
g · [p] = [e0], where ei ∈ Cn+1 denotes the vector all of whose coordinates are zero,
except for the i-coordinate, which is equal to one. Then,

G =

[
g 0
0 (g−1)t

]
∈ Sp(2(n+ 1),C),

the symplectic group over C. Thus, performing on Fa the change of coordinates
induced by G, we end up with a foliation which is still of the form (2.1). So we
may assume that Fa has a singularity at p = [e0] We will dehomogenize Fa in
order to study the local behaviour of invariant varieties in the neighbourhood of
the singularity [p] × [q]. Without loss of generality, we may also assume that the
first coordinate of q is nonzero. Performing the dehomogenization, we obtain the
vector field

Fa =

n∑
i=1

(âi − xiâ0)
∂

∂xi
−

n∑
j=1

(
Âj − yjÂ0

) ∂

∂yj
,
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where the circumflex means that the corresponding polynomial has been dehomog-
enized by taking x0 = 1 and y0 = 1. Since p = [e0] is a singularity of Φa, it follows
that

âi(0) = (âi − xiâ0)(0) = 0.

Moreover, ai − xk−10 `i ∈ (x1, . . . , xn), for some linear form `i ∈ C[x0, . . . , xn], so
that

(2.2) `i(p) = ai(p) =

{
0 if i ≥ 1

`0(p) otherwise.

Since the number `0(p) appears quite often in what follows, we denote it by α. Next
we must compute the 1-jet of Fa at [p]× [q] . But

∂ai
∂x0
− (k − 1)xk−20 `i − xk−10 `i(p) ∈ (x1, . . . , xn).

Thus, taking (2.2) into account,

∂ai
∂x0

(p) = 0 for i > 0, while
∂a0
∂x0

(p) = kα.

Since the first n terms are independent of the ys, the 1-jet can be written in the
form [

J1 0
∗ −J2

]
where J1 and J2 are n×n matrices. A straightforward computation shows that the
ij entry of J1 satisfies

(J1)ij =


∂âi
∂xi

(0)− â0(0) if i = j

∂âi
∂xj

(0) otherwise.

Thus, denoting by J0 the jacobian of (â1, . . . , ân), we can write

J1 = J0 − â0(0)In = J0 − αIn
where In denotes the n× n identity matrix. Turning now to J2,

(J2)ij =


∂âj
∂xj

(0)− kα if i = j

∂âj
∂xi

(0) otherwise.

Hence,

J2 = J t0 − kαIn
Therefore the eigenvalues of J are of the form λ−α or −λ+kα for some eigenvalue
λ of J0. Note that the coefficients of `i can be chosen arbitrarily, so that both α
and the λs can take any value whatsoever.

Writing λ1, . . . , λn and α to denote the λs and α corresponding to the singularity
[p]× [q], the 2n-tuple of eigenvalues of the 1-jet of Fa at [p]× [q] is

(2.3) τ(p, q) = (λ1 − α, . . . , λn − α,−λ1 + kα, . . . ,−λn + kα),

For the purposes of this note we will say that the singularity [p] × [q] of Fa is of
Poincaré type if

(1) λ1, . . . , λn, α are linearly independent over Q; and
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(2) the ratios

λi − να
λj − ν′α

∈ C \ R

for every 1 ≤ i < j ≤ n and all choices of ν, ν′ ∈ {1, k}.

Proposition 2.1. If the singularity [p] × [q] of Fa is of Poincaré type then the
2n-tuple τ(p, q) is nonresonant.

Proof. Suppose that one of the eigenvalues of Fa at [p]× [q], say µ, satisfies a reso-
nance relation. Taking into account our previous characterisation of the eigenvalues
of Fa at a singularity, we conclude that there must exist positive integers qj and
mj such that

µ =

n∑
i=1

qj(λj − α) +mj(−λj + kα).

Collecting the terms corresponding to the same λs,

µ =

n∑
i=1

(qj −mj)λj −
n∑
i=1

(qj − kmj)α.

Now let

e(µ) =

{
0 if µ = λt − α
1 if µ = −λt + kα,

for some 1 ≤ t ≤ n. Since the λ1, . . . , λn, α are linearly independent over Q, it
follows that,

qj −mj =

{
(−1)e(µ) if j = t

0 otherwise.

Hence,
n∑
i=1

(qj − kmj) =

n∑
i=1

(1− k)mj + (−1)e(µ).

Therefore,
n∑
i=1

mj = e(µ) so that

n∑
i=1

mj +

n∑
i=1

qj = 1,

no matter what µ is. But this implies that the qs and ms do not define a resonance
relation, contrary to what had been assumed. �

Let Xn,k be the projectivization of the complex vector space of n-tuples of ho-
mogeneous polynomials of degree k in C[x0, . . . , xn]. We will define two subsets of
Xn,k from which foliations are going to be chosen. First, let Pn,k be the subset of
those a ∈ Xn,k that give rise to a foliation Fa of Pn × Pn all of whose singularities
are of Poincaré type. The second set corresponds to those a ∈ Pn,k for which a0 is
irreducible and (a0, . . . , an) is the irrelevant maximal ideal of C[x1, . . . , xn]. This
last set will be denoted by Vn,k.

Proposition 2.2. Both Pn,k and Vn,k are dense subsets of Xn,k.
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Proof. The proof that Pn,k is a dense subset of Xn,k is analogous to the proofs of
similar results in [25, p.668ff] and [28, Theorem 2, p. 144], and will be omitted. In
order to prove that Vn,k is also dense in Xn,k we consider the set

Un,k = {a ∈ Xn,k : a0 is irreducible and (a0, . . . , an) = (x0, . . . , xn)}.

The density of Vn,k follows from the inclusion

Pn,k ∩ Un,k ⊂ Vn,k,

if we prove that Un,k is an open nonempty subset of Xn,k. In order to do that, let

Yn,k = {[a]× [p] : a(p) = 0} ⊂ Xn,k × Pn.

If φ is the projection of Xn,k × Pn on its first factor then

Fn,k = {[a] ∈ Xn,k : dim((φ|Yn,k
)−1([a])) ≥ 0}

is closed in Xn,k. Since [xk0 : · · · : xkn] does not belong to this set, its complement is
a nonempty open subset of Xn,k. Let Sk be the homogeneous component of degree
k of C[x0, . . . , xn]. A similar argument shows that

Gn,k = {[a] ∈ Xn,k : a0(p) = 0 = ∇a0(p) for some p ∈ Pn} ⊂ P(Sk)

is also closed in Xn,k. Since an n-tuple with a0 = xk0 + · · ·+ xkn does not belong to
Gn,k, it follows that

Un,k = Xn,k \ (Fn,k ∪Gn,k)

is an open nonempty set of Xn,k as we wished to prove. �

2.3. Some global properties. Before we proceed to the local analysis of ξa, let
us consider the effect of Poincaré type singularities on the hypersurface Z(ha) itself.
We retain the notation used in §2.2 and write

ν(n, d) = dn + dn−1 + · · ·+ d+ 1.

It follows from [29, Remark 3.2, p. 498] that this is the number of singularities of
a nondegenerate holomorphic foliation of degree d defined in Pn.

Proposition 2.3. If all the singularities of Fa are of Poincaré type, then

(1) Z(ha) is smooth;
(2) Sing(Fa) 6⊂ Z(ha);
(3) #Sing(Fa) = (n+ 1)ν(n, d);

where, d = deg(Φa) = deg(ai)− 1 for every 0 ≤ i ≤ n.

Proof. In this proof we use the notation and results established in §2.2. We need
only argue over what happens at one singularity of Fa, which can always be taken
to be of the form [e0]× [q]. Moreover, since we are assuming the singularities to be
of Poincaré type, there exists a linear change of variables in the xs such that the
matrix J0 is diagonal with eigenvalues λ1, . . . , λn. In these coordinates, we have
that

∂ai
∂xj

(e0) = λiδij ,

for 1 ≤ i, j ≤ n, where δij is Kronecker’s delta symbol. This linear change of the
x-coordinates gives rise to a symplectic change of coordinates in Cn+1×Cn+1. We
proceed by explicitly computing these singularities.
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If [e0] × [q] is a singularity of Fa, then the coordinates of [q] are zeroes of the
equations

(2.4) yjAi(p, y)− yiAj(p, y) = 0 for all 0 ≤ i, j ≤ n;

which, when j = 0, become

0 = y0Ai(p, y)− yiA0(p, y) = y0yi(λi − kα),

by our choice of the x-coordinates. In particular, if y0 6= 0 then yi = 0 for all
1 ≤ i ≤ n; so [q] = [e0] is a solution of the system (2.4). If, on the other hand,
y0 = 0, then the equations we have to consider are

0 = yjAi(p, y)− yiAj(p, y) = yjyi(λi − λj)

for all 1 ≤ i < j ≤ n, whose zeroes are the points [ei], for 1 ≤ i ≤ n. Therefore,
[e0]× [q] is a singularity of Fa if and only if [q] = [ej ] for 0 ≤ j ≤ n.

Turning now to (1), let us consider a singularity of Z(ha). Since the change of
coordinates used above is symplectic, we may assume that this singularity is of the
form [e0]× [q], for some [q] ∈ Pn. Thus, [q] must be a zero of

(2.5)
∂ha
∂yj

(e0) = aj(e0) = 0 and
∂ha
∂xj

(e0) = Aj(e0, q) = 0,

for all 0 ≤ j ≤ n. In particular, [e0] × [q] must be a singularity of Fa, which is of
Poincaré type by hypothesis. This implies that α 6= 0 by (2.2). However, by (2.3),
a0(e0) = α, which contradicts (2.5) when j = 0.

In order to prove (2), recall that if [e0] is a singularity of Φa, then Φa(e0) is
collinear with e0 as vectors in Cn+1. Thus,

ha([e0]× [ej ]) = aj(e0) = δj0α;

so Z(ha) contains all but one of the singularities of Fa in π−12 ([e0]).
Finally, Poincaré type implies that the singularities of Φa in Pn are all nonde-

generate. Therefore, by [29, Remark 3.2, p. 498], Φa has dn + dn−1 + · · · + d + 1
singularities, where d is the degree of Φa. But the above argument implies that, for
each [p] ∈ Sing(Φa) there are exactly n + 1 points [q] ∈ Pn such that [p] × [q] are
singularities of Fa, and this proves (3). �

Note that we could easily have computed the number of singularities of Fa using
the Baum-Bott Theorem; see [2]. However, this seemed pointless, since we also
needed to determine the coordinates of the singular points, and that immediately
gives a method to count the singularities.

2.4. Germs of invariant subvarieties. We now turn to the behaviour of certain
invariant subvarieties in the neighbourhood of a Poincaré type singularity p of ξa.
We may choose local coordinates such that p = (0, . . . , 0). Let D be a derivation
that represents ξa in this neighbourhood. Keeping to the notation used in 2.2, the
eigenvalues of the 1-jet of D at p can be written in the form

λ1 − α, . . . , λn − α,−λ1 + kα, · · · − λn + kα,

where k ≥ 2 is an integer. Moreover, since p is of Poincaré type, α, λ1, . . . , λn
are linearly independent over Q. In particular, the eigenvalues are nonresonant by
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Proposition 2.1. Thus, by Poincaré’s Theorem [1, p. 175], D can be written, after
a formal change of variables, in the form

(2.6) D =

n∑
i=1

(λi − α)xi
∂

∂xi
− (λi − kα)yi

∂

∂yi
,

where x1, . . . , xn, y1, . . . , yn is a formal coordinates system at p. For the remainder
of this subsection we assume that D is of the form (2.6). We need a technical lemma
concerning the eigenvectors of D.

Lemma 2.4. Let p and D be as above. The monomials xβyγ and xβ
′
yγ

′
belong to

the same eigenspace of D if and only if

β − β′ = γ − γ′, |β| = |β′| and |γ| = |γ′|,

where |u| denotes the sum of the entries of the integer vector u. In particular, an
eigenspace that contains a pure power of a variable is one dimensional.

Proof. Let λ denote the vector (λ1, . . . , λn). Then, xβyγ is an eigenvector of D for
the eigenvalue

〈λ, β − γ〉+ α|kγ − β|.
Since λ1, . . . , λn, α are linearly independent over Q, the monomials xβyγ and xβ

′
yγ

′

have the same eigenvalue if and only if

(2.7) β − γ = β′ − γ′ and |kγ − β| = |kγ′ − β′|,

which are equivalent to the conditions stated in the lemma. Thus a monomial
xβ

′
yγ

′
has the same eigenvalue as xri if and only if

rei = β′ − γ′ and − r = |kγ′ − β′|.

The first equation implies that

β′j = γ′j = 0 for all j 6= i.

Taking this into account the two equations above become

r = β′i − γ′i and − r = kγ′i − β′i.

Since k > 1, it follows that β′i = r and γ′i = 0 as we wished to prove. The proof for
the power yri is analogous and will be omitted. �

The next result is a variant of [26, §2.4, Lemma, p. 543] that has been adapted
to the needs of this paper.

Proposition 2.5. Let a ∈ Pn,k and assume that Y and Z are subvarieties of
Pn × Pn invariant under Fa. If dim(Y ) + dim(Z) = 2n and Z is smooth at a point
of Y ∩ Z, then Y is also smooth at this point.

Proof. For the sake of simplicity we will suppose that a ∈ Pn,k has been fixed and
drop it from the notation. Now let

p ∈ Y ∩ Z ⊆ Sing(F).

If Z is smooth at p, we may choose local coordinates z1, . . . , z2n of Pn × Pn at p
such that Z is given by z1 = · · · = zr = 0 in these coordinates. Let I be the ideal

of Y in the local ring Op of p and let J = (z1, . . . , zr) and Î = ÔpI, be the ideals of

Z and Y in the completion Ôp. Denote by D the derivation that F defines on Ôp.
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Since J is invariant under D, it induces a derivation D in

C[[z1, . . . , z2n]]/J ∼= C[[zr+1, . . . , z2n]].

Applying Poincaré’s Theorem to D, we can assume, without loss of generality, that
there are distinct eigenvalues µr+1, . . . , µ2n of the 1-jet of D at p, such that

D =

2n∑
i=r+1

µizi∂/∂zi.

Since (Î + J)/J is zero dimensional, it contains a polynomial in C[zi], for each

r + 1 ≤ i ≤ 2n. These polynomials are mapped inside (Î + J)/J by D and each
power of zi is an eigenvector of D associated to a different eigenvalue. Therefore,

each one of these powers belong to (Î + J)/J . Thus, if r+ 1 ≤ i ≤ 2n, there exists

a polynomial gi ∈ Î of the form

gi = z`i +

r∑
j=1

aijzj ∈ Î

for some integer ` > 0 and ai1, . . . , air ∈ Ôp. Writing gi as a sum of components,

each one of which is a polynomial in a different eigenspace of Ôp under D, and

taking into account that D(gi) ∈ Î, the usual argument shows that each one of

these components belongs to Î. However, by Lemma 2.4, no monomials in the
support of

∑r
j=1 aijzj can have the same eigenvalue as z`i because i /∈ {1, . . . , r}.

Therefore, z`i ∈ Î. Moreover, since I is radical, so is Î; see [21, Scholie 7.8.3 (vii),

p. 215]. Hence, (zr+1, . . . , zn) ∈ Î . Thus, Y is smooth at p, and the proof is
complete. �

3. Invariant subvarieties

In this section we discuss various properties of subvarieties invariant under Fa.
We assume throughout the section that

ha = a0y0 + · · ·+ anyn ∈ C[x0, . . . , xn, y0, . . . , yn]

is a bihomogeneous irreducible polynomial. Moreover, ha will be called well-chosen
if for some triple (i, j, k) ∈ N3 of pairwise distinct integers,

• (ai) and (ai, aj) are prime ideals;
• aj /∈ (ai) and ak /∈ (ai, aj);
• (a0, . . . , an) = (x0, . . . , xn).

By permuting the y variables, we can always assume that i = 0, j = 1 and k = 2
in the above definition. Indeed, from now on we assume that such a permutation
has been performed whenever necessary.

3.1. Complete intersections. We begin with an elementary result in commuta-
tive algebra.

Lemma 3.1. If ha is well-chosen then the ideals (ha) and (a0, ha) are both prime
in C[x0, . . . , xn, y0, . . . , yn].
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Proof. Since ha is linear in the ys, it follows that it can only be factored in the form
bλ, where b ∈ C[x0, . . . , xn] and λ is linear in the ys. However, this would imply
that b is a common divisor of the as, which is not possible because a0 is irreducible.

We now turn to the ideal (a0, ha). Let π be the restriction to Z(a0, ha) of the
projection of Pn×Pn on its first factor. Since a0 is irreducible, so is the hypersurface
Z(a0) of Pn. Moreover, the fibre

π−1([p]) = Z(ha(p, y)) ⊂ Pn,

is linear, therefore irreducible for all [p] ∈ Z(a0). So the fibres have dimension n−1
whenever ha(p, y) 6= 0. But ha(p, y) = 0 as a polynomial in C[y0, . . . , yn] if and
only if aj(p) = 0 for all 0 ≤ j ≤ n. This implies, by the Projective NullstellenSatz,
that (a0, . . . , an) 6= (x0, . . . , xn), contradicting the hypotheses. Thus Z(a0, ha) is
an irreducible variety by [22, Theorem 11.14, p. 139].

In order to finish the proof we need only prove that (a0, ha) is a radical ideal.
Suppose that gm ∈ (a0, ha) for some g ∈ C[x0, . . . , xn, y0, . . . , yn] and some integer
m > 0. Since C[x0, . . . , xn]/(a0) is a domain, there exists an integer ` ≥ 0 and
polynomials q, r ∈ C[x0 . . . , xn, , y0 . . . , yn] such that

a`1g ≡ qha + r (mod (a0))

and the polynomial r does not contain any monomial with a positive power of y1.
Thus,

rm ≡ (a`1g)m (mod (a0, ha)).

Hence, gm ∈ (a0, ha) implies that

(3.1) rm ≡ bha (mod (a0)),

for some polynomial b. If

b ≡ bsys1 + · · ·+ b0 (mod (a0)),

then it follows from (3.1) and the choice of r that bsa1 ≡ 0 (mod a0). This implies
that b ≡ 0 (mod a0), so rm ≡ 0 (mod a0). Since (a0) is a prime ideal, it follows
that r ≡ 0 (mod a0) and that

(3.2) a`1g ≡ qha (mod (a0)).

Moreover, we may choose the smallest ` for which this last congruence holds. If
` = 0 we are done; so let ` > 0 and let us aim at a contradiction.

The minimality of ` implies that there exists at least one coefficient in q that does
not belong to (a1, a0); otherwise we could cancel a1 in (3.2). Order the monomials
in y lexicographically subject to y2 > y3 > · · · > yn and let yα be the largest
monomial in the support of q whose coefficient qα does not belong to (a0, a1). It
follows from (3.2) that qαa2 ∈ (a0, a1). Since ha is well-chosen, it follows that
qα ∈ (a0, a1); which contradicts our choice of α and completes the proof of the
theorem. �

Proposition 3.2. If ha is well-chosen then all irreducible subvarieties of codimen-
sion one in Z(ha) are schematic complete intersections.

Proof. Since ha is well-chosen and has degree one, it follows that (ha) is prime
in C[x0, . . . , xn, y0, . . . yn]. In particular, B = C[x0, . . . , xn, y0, . . . yn]/(ha) is a do-
main. But by Nagata’s factoriality lemma, if Ba0 is a factorial domain and a0 is
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prime in B then B is factorial; see [27, Théoréme 5, p. 31] or [16, Lemma 19.20, p.
487]. However,

Ba0
∼= C[x0, . . . , xn]a0 [y1, . . . , yn]

is a factorial domain by [27, Théoréme 4, p. 29 and Corollaire 1, p. 23] and (a0, ha)
is a prime ideal by Theorem 3.1. Therefore,

B/(a0) ∼= C[x0, . . . , xn, y0, . . . yn]/(a0, ha)

is a domain. Hence, (a0) is prime in B and, by the factoriality lemma, B is a
factorial domain, from which the desired result follows. �

3.2. Invariant hypersurfaces. Throughout this subsection we assume that ha is
well-chosen, as defined at the very beginning of this section.

Theorem 3.3. Let Y be a subvariety of codimension one in Z(ha) invariant under
Fa. If all the singularities of Y are normal crossings then Y = Z(ha, g) for some
bihomogeneous polynomial g whose bidegree (`, `′) satisfies ` ≤ n or `′ ≤ n.

Proof. In order to simplify the notation write Z = Z(ha) for the subvariety, X =
Pn × Pn for the multiprojective space and F for the foliation Fa. The ideal sheaf
of Z in OX is IZ ∼= OX(−k,−1), because ha has bidegree (k, 1). Since ωX ∼=
OX(−n− 1,−n− 1), it follows that

ωZ ∼= ωX ⊗ IZ ⊗ OZ ∼= OZ(k − n− 1,−n).

However, by adjunction,

(detNa)∨ ⊗ Ta ∼= ωZ ,

where Na is the normal bundle of F = Fa and Ta its tangent bundle; see § 2.1.
Hence,

(detNa)∨ ∼= OZ(−n,−n).

By Proposition 3.2, there exists a polynomial g ∈ C[x0, . . . , xn, y0, . . . , yn] of bide-
gree (`, `′) such that Y = Z(ha, g). Then IY ∼= OZ(`, `′). But by [4, equation (3),
p. 600] Y can only be invariant under F if

IY ⊗ (detNa)∨ ∼= OZ(`− n, `′ −m)

is not ample, which implies that `− n ≤ 0 or `′ − n ≤ 0, and completes the proof
of the theorem. �

3.3. Invariant curves. We now turn to invariant curves. Recall that a curve
C in Pn × Pn has bidegree (a, b) if its class in the Chow ring A∗(Pn × Pn) is
asntn−1 + bsn−1tn, where s and t are the generators of A∗(Pn × Pn). Recall that
ν(n, k) = kn+ · · ·+k+ 1 is the number of singularities of a nondegenerate foliation
of degree k in Pn.

Theorem 3.4. Let a ∈ P(n, k) for some k ≥ 2. If C 6⊂ Z(ha) is a curve of bidegree
(a, b) that is invariant under Fa, then C is smooth and a+ kb ≤ (n+ 1)ν(n, k).

Proof. It follows from Proposition 2.5 that C is smooth and transversal to the
hypersurface Z = Z(ha). The class of C in the Chow ring of X is [C] = asntn−1 +
bsn−1tn while the class of Z = Z(h) is [Z] = ks+ t. Thus,

(3.3) [C] · [Z] = (a+ kb).
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Since the intersection is transversal, we also have that [C] · [Z] = #(C ∩ Z). But if
two invariant varieties intersect at an isolated point, it must be a singularity of the
foliation, so

(3.4) #(C ∩ Z) ≤ #(Sing(Fa) ∩ Z) ≤ (n+ 1)ν(n, k),

where the last inequality comes from Proposition 2.3. The inequality of the theorem
follows by combining (3.3) and (3.4). �

When n = 2 we can also determine some bounds for invariant curves that are
contained in the hypersurface Z(ha). The first results we prove are concerned with
the variety Va = Z(ha,∆) where ∆ = x0y0 + x1y1 + x2y2.

Proposition 3.5. The variety Va is isomorphic to the blowup of P2 at the singular
points of da.

Proof. Let π be the projection of P2 × P2 on its first coordinate and denote by B

the blowup of P2 at the singularities of da. We will prove that for every 0 ≤ i ≤ 2
there exists an isomorphism

φi : Va ∩ π−1(Ui)→ B ∩ π−1(Ui),

where Ui is the open set of P2 defined by xi 6= 0. The proposition follows from the
compatibility of these isomorphisms at the intersections Ui ∩Uj , for 0 ≤ i < j ≤ 2.

By symmetry it is enough to describe the construction of φi when i = 0. Denoting

by f̂ the polynomial obtained by setting x0 = 1 in f ∈ C[x0, x1, x2, y0, y1, y2], we
can identify B ∩ π−1(Ui) with the subset

B0 = {(x1, x2)× [y1 : y2] | (â1 − x1â0)y1 + (â2 − x2â0)y2 = 0}

of C2 × P1, and Va ∩ π−1(Ui) with the subset

V0 = {(x1, x2)× [y0 : y1 : y2] | ĥa = ∆̂ = 0},

of C2 × P2. Under these identifications define

φ0 : V0 → C2 × P2,

by

φ0((x1, x2)× [y0 : y1 : y2]) = (x1, x2)× [y1 : y2].

That this map is well defined follows from

0 = ha(1, x1, x2, y0, 0, 0) = y0.

Moreover, since
2∑
i=1

(âi − xiâ0)yi = ĥa − a0∆̂ = 0;

the image of φ0 is contained in B0. A similar argument allows us to define the
inverse of φ0 by

(φ0)−1((x1, x2)× [y1 : y2]) = (x1, x2)× [−x1y1 − x2y2 : y1 : y2].

The compatibility of the isomorphisms φj follows from a simple calculation that
will be left to the reader. �

As a consequence of this proposition we can immediately determine a number of
properties of Va.
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Corollary 3.6. Va is a smooth variety of dimension 2 birational do P2, whose
Picard group is

Zh+

ν(n,k)∑
i=1

ZEi,

where h denotes the hyperplane class and Ei, for 1 ≤ i ≤ ν(n, k), are the classes of
the exceptional fibres.

For the remainder of this note we assume that a ∈ P2,k, for some integer k ≥ 2.
Recall that π1 denotes the projection of Pn × Pn on its first factor and Φa is the
foliation induced by Fa on Pn.

Theorem 3.7. Let C be an irreducible curve contained in Va and invariant under
Fa. If dim(π1(C)) = 1 then C is smooth and its class in Pic(Va) is

dH +

ν(n,k)∑
i=1

`iEi

where 0 ≤ d ≤ k + 2 and 0 ≤ `i ≤ 2.

Proof. The projection π1(C) must be a curve invariant under the foliation Φa of P2,
and the hypotheses on a imply that the singularities of this curve must be normal
crossings; see [25, Proposition 2.5, p. 656]. Therefore, by [6, Remark, p. 891],
the degree of π1(C) cannot exceed k + 2. Thus C, which is contained in the strict
transform of π1(C), must be smooth. Moreover, the normal crossing condition
implies that π1(C) has at most two branches at each of the singularities of da.
Therefore, 0 ≤ `i ≤ 2 and the proof is complete. �

In order to apply this result to an invariant hypersurface of Z(ha) we need an
additional proposition.

Proposition 3.8. Let g be a bihomogeneous polynomial in C[x0, x1, x2, y0, y1, y2].
If Z(ha, g) is invariant under ξa then

dim(π1(Z(ha, g,∆)) > 0.

Proof. One easily checks that ξa(∆) = ha, which implies that (ha, g,∆) is invariant
under ξa. Let Y = π1(Z(ha, g,∆)) and suppose, by contradiction, that it has
dimension zero. Since ∆ is invariant under the linear changes of variable described
in 2.2, we can assume, without loss of generality that Y ∩Z(xi) = ∅ for every 1 ≤ i ≤
n. But Y must be invariant under Φa, so it is a union of singularities of this foliation.
Thus, the ideal of Y in C[x0, x1, x2, y0, y1, y2] is I(Y ) = m1 ∩ · · · ∩mt, where the ms
are homogeneous maximal ideals corresponding to singularities of Φa in Y . Hence,
there exists a positive integer m such that (yiµ)m ∈ (f,∆, g), for every generator µ

of I(Y ). Taking yj = 0 for every j 6= i and yi = 1, we conclude that µ ∈
√

(ai, xi, βi)

where βi is the coefficient of yri in g. Hence, m1 ∩ · · · ∩ mt ⊂
√

(ai, xi, βi). But xi
does not divide ai, so Z(ai, xi, βi) ⊂ P2 cannot have positive dimension. Hence,

renumbering the ms, if necessary, we have an equality
√

(ai, xi, βi) = m1 ∩ · · · ∩ms.
In particular, this implies that m1∩· · ·∩ms contains a power of xi, which contradicts
our choice of coordinates. �

The following corollary is an immediate consequence of Theorem 3.7 and Propo-
sition 3.8.
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Corollary 3.9. Let C be a curve, contained in Z(ha), that is invariant under ξa. If
the ideal generated by I(C) and ∆ is a radical ideal, then C is the scheme theoretic
intersection of Z(ha) and Z(g), where g is a bihomogeneous polynomial of bidegree
(d, `) with d ≤ k + 2 and 0 ≤ ` ≤ 2.

We can also use these results to give a simpler proof of Lemma 5.1 of [11].

Corollary 3.10. If Φa has no invariant curve in P2, then

(1) Z(ha, g,∆) = Z(ha, g);
(2) g ≡ ∆m (mod ha) for some positive integer m.

Proof. Since the projection of Z(ha, g,∆) on P2 is invariant under Φa, the hypothe-
ses on ha imply that it must have dimension zero or two. Dimension zero is excluded
by Proposition 3.8; so dimπ1(Z(ha, g,∆)) = 2, which implies that Z(ha, g,∆) itself
has dimension two. Thus, ∆m ∈ (ha, g) for some positive integer m. �
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Éditions Librairie du Globe, Paris, 1996.
2. P. Baum and R. Bott, Singularities of holomorphic foliations, J. Diff. Geo. 7 (1972), 279–342.

3. J. Bernstein and V. Lunts, On non-holonomic irreducible D-modules, Invent. Math. 94 (1988),

223–243.
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23. J. P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., vol. 708, Springer-

Verlag, Heidelberg, 1979.
24. Masaki Kashiwara, Systems of microdifferential equations, Progress in Mathematics, vol. 34,
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